Vasopressina (ormone antidiuretico o ADH): funzioni e patologie

MEDICINA ONLINE RENI RENE URINA APPARATO URINARIO URETRA URETERE AZOTEMIA ALBUMINA SINDROME NEFRITICA NEFROSICA PROTEINURIA POLLACHIURIA UREMIA DISURIA CISTITE INFEZIONE POLICISTICO LABORATORIOLa vasopressina (o ADH, acronimo dall’inglese antidiuretic hormone) è un peptide di nove aminoacidi con funzioni di ormone, neurotrasmettitore e modulatore della trasmissione nervosa. È nota anche come ormone antidiuretico, adiuretina o arginina-vasopressina (AVP). La maggior parte della vasopressina viene sintetizzata dai nuclei sopraottico e paraventricolare dell’ipotalamo, una importante struttura del sistema nervoso centrale.

Leggi anche: Ipotalamo: anatomia, struttura e funzioni

Quando viene secreta la vasopressina?

La vasopressina viene secreta nelle seguenti condizioni:

  • Disidratazione dell’organismo: è lo stimolo più efficace nell’indurre la secrezione dell’ormone. La vasopressina determina il recupero di fluidi attraverso la formazione di urine più concentrate in modo da conservare i liquidi contenuti nel corpo e mantenere stabile la volemia (il volume di sangue circolante). Determina anche un aumento della pressione arteriosa in quanto ha anche attività di vasocostrittore. Una sostanza simile denominata lisin-vasopressina è stata trovata nei maiali dove svolge funzioni analoghe. Nell’ipotalamo i neuroni che formano i nuclei sopraottico e paraventricolare che sintetizzano la vasopressina sono osmocettori che in seguito all’aumento dell’osmolarità del plasma (soprattutto se determinata da una aumentata concentrazione di sodio) inducono la secrezione di vasopressina a livello dell’ipofisi posteriore (neuroipofisi). Questi neuroni ricevono anche afferenze da altri osmocettori localizzati in regioni (organo vascolare della lamina terminale e organo subfornicale) localizzate in prossimità della parete anteriore del terzo ventricolo. La secrezione, assente a livelli di osmolarità plasmatica intorno ai 280 mosm/kg, è già spiccata a 290 mosm/kg ossia a livelli di poco superiori. Gli osmocettori, oltre a regolare il rilascio di vasopressina, controllano anche lo stimolo della sete. La vasopressina non è l’unico ormone che regola i fenomeni di concentrazione e diluizione delle urine: altri ormoni coinvolti sono l’aldosterone e i peptidi natriuretici come il peptide natriuretico atriale.
  • Contrazione del volume plasmatico: è un meccanismo meno sensibile rispetto alla risposta in seguito ad aumenti dell’osmolarità plasmatica. La vasopressina viene prodotta in seguito a stimolazione dei barocettori presenti nelle carotidi e nelle altre arterie e dei volocettori a livello dell’atrio destro. Le emorragie massive, determinando una diminuzione della volemia, inducono la liberazione di vasopressina attraverso questi meccanismi.
  • Aumenti della concentrazione plasmatica di colecistochinina attraverso modalità non ancora chiarite.
  • L’alcool etilico riduce la secrezione di vasopressina, il che determina riduzione del riassorbimento di acqua dal filtrato glomerulare ed aumenta la diuresi: in parole povere, quindo si bevono alcolici, si ha maggiore stimolo ad urinare.
  • L’angiotensina II può stimolare la secrezione di vasopressina.

Leggi anche: Idratazione corretta: quanta acqua bere al giorno e perché è così importante

Funzioni della vasopressina a livello renale

L’ormone agisce a livello del dotto collettore (zona iperosmotica) dove promuove l’inserimento, a livello della membrana apicale delle cellule epiteliali tubulari, di proteine chiamate acquaporine (aquaporina-2s), che aumentano il riassorbimento dell’acqua. Vengono così escrete urine ridotte in volume e concentrate fino a 1200 mMol/l(antidiuresi). Viceversa per una diminuzione di osmolarità del plasma si avranno urine diluite (150 mMol/l). La vasopressina lega recettori specifici denominati V2 (accoppiati a proteine G stimolatorie) situati sulla membrana basolaterale delle cellule del tubulo contorto distale. Le proteine G stimolatorie attivano l’enzima adenilato ciclasi con formazione di cAMP e pirofosfato a partire da ATP. Il cAMP attiva una cascata di segnali che termina con l’inserzione nella membrana plasmatica apicale delle acquaporine le quali normalmente si trovano inserite nella membrana di vescicole di deposito. L’inserimento delle proteine nella membrana plasmatica avviene tramite un processo di esocitosi delle vescicole. In caso di diminuzione della vasopressina le acquaporine saranno nuovamente internalizzate nella cellula tramite endocitosi. Il processo tramite cui porzioni di membrana vengono inserite o tolte dalla membrana plasmatica è noto come “riciclaggio di membrana”. La proteina repressore che regola l’espressione del gene che codifica per la protein chinasi A (PKA) ha un sito di legame per il cAMP. In seguito al legame, la proteina si distacca dal promoter del gene determinando una maggior sintesi di PKA. La protein chinasi A fosforila altri enzimi che in cascata arrivano alla liberazione di glucosio a partire dal glicogeno alla base dei processi che producono energia all’interno della cellula. L’energia viene anche utilizzata per fondere la membrana delle vescicole nella quale sono inserite le acquaporine con la membrana della cellula epiteliale tubulare. In questo processo sono probabilmente coinvolti ioni calcio e quindi la fosfolipasi C(PLC). La PLC può essere attivata da recettori associati a proteine G. La vasopressina inoltre aumenta la permeabilità all’urea della porzione papillare dei dotti collettori, determinando un aumentato riassorbimento di urea nell’interstizio della midollare renale, in seguito al gradiente di concentrazione creato dalla rimozione di acqua nella porzione corticale dei dotti collettori. L’urea, a livello degli osmocettori ipotalamici, diffondendo liberamente attraverso le membrane, non costituisce uno stimolo per l’inibizione del rilascio di vasopressina. Un’altra funzione della vasopressina nel rene è quella di stimolare il riassorbimento di Sodio a livello della porzione ascendente dell’ansa di Henle.

Leggi anche: Mi alzo spesso di notte per urinare: quali sono le cause e le cure?

Funzioni della vasopressina a livello cardiovascolare

La vasopressina, aumentando le resistenze periferiche, determina un innalzamento della pressione arteriosa. Questo tipo di regolazione è blanda nell’individuo sano; acquista maggiore importanza nei casi di shock ipovolemico dovuto, ad esempio, ad emorragie dove la vasopressina secreta si rivela un efficiente meccanismo di compensazione.

Leggi anche:

Funzioni della vasopressina a livello del sistema nervoso centrale

La vasopressina prodotta e rilasciata nel sistema nervoso centrale, dove ha funzioni di neurotrasmettitore o neuromodulatore, sembra essere implicata nei meccanismi di formazione della memoria (memoria a lungo e breve termine), riflessi polisinaptici. I meccanismi alla base di queste funzioni non sono stati ancora chiariti e anche il reale ruolo della vasopressina in questo ambito è ancora controverso. Ciononostante la desmopressina, una sostanza analoga alla vasopressina, ha suscitato interesse come sostanza nootropa. La vasopressina è rilasciata nel cervello con ritmo circadiano dai neuroni del nucleo soprachiasmatico dell’ipotalamo. La vasopressina rilasciata dai neuroni ipotalamiciche proiettano alla corteccia è coinvolta nella regolazione della pressione arteriosa, della temperatura corporea e, in animali come il topo campagnolo comune, nei comportamenti aggressivi. È in studio il ruolo della vasopressina nei comportamenti sociali dei topi. Si pensa che la vasopressina, rilasciata nel sistema nervoso centrale durante l’attività sessuale, induca e mantenga comportamenti rivolti a mantenere la stabilità della coppia come ad esempio l’aggressività verso altri maschi. Le evidenze sperimentali includono studi condotti in diverse specie animali e indicano che la distribuzione all’interno delle varie regioni del sistema nervoso centrale della vasopressina e dei suoi recettori presenta differenze tra le varie specie animali e correla con differenti comportamenti sociali specie specifici. In particolare, i recettori per la vasopressina sono distribuiti in maniera differente nelle specie animali monogame e promiscue, talvolta è differente anche la distribuzione degli assoni contenenti vasopressina, anche quando vengano comparate specie strettamente correlata tra di loro. Inoltre, anche esperimenti che prevedono l’iniezione intracerebrale di agonisti ed antagonisti della vasopressina rafforzano l’ipotesi che la vasopressina sia coinvolta nei comportamenti aggressivi contro altri maschi. È stato anche dimostrato che differenze nella sequenza del gene che codifica per il recettore della vasopressina tra individui della stessa specie potrebbero essere predittive di differenze nel comportamento sociale.

Leggi anche: Asse ipotalamo-ipofisario: fisiologia e ormoni rilasciati

Struttura e correlazione con l’ossitocina

Le vasopressine (vasopressina umana e gli analoghi ormoni presenti in altre specie animali) sono dei peptidi formati da 9 aminoacidi (nonapeptide). Il numero di aminoacidi presenti nella molecola di preormone prima che questa venga attivata per clivaggio è di 164. La sequenza aminoacidica (struttura primaria) della vasopressina umana è Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Arg-Gly con i residui di cisteina legati da un ponte disolfuro. La lisin-vasopressina ha l’aminoacido lisina al posto dell’arginina. La struttura dell’ossitocina è molto simile a quella delle vasopressine: anch’essa è un nonapeptide (peptide di nove aminoacidi) con un ponte disolfuro e la sua sequenza aminoacidica differisce solo in due posizioni (vedi tabella seguente). Il gene che codifica per la vasopressina e il gene che codifica per l’ossitocina si trovano sullo stesso cromosoma separati da una distanza relativamente breve (meno di 15,000 basi nelle varie specie). I neuroni magnocellulari che producono vasopressina sono simili in molti aspetti e adiacenti ai neuroni magnocellulari che producono ossitocina. La somiglianza tra vasopressina ed ossitocina può determinare reazioni crociate: l’ossitocina presenta una bassa attività antidiuretica, alti livelli di vasopressina possono determinare contrazioni della muscolatura uterina.

Leggi anche: Patologie di ipotalamo e ipofisi

Patologie correlate alla vasopressina

Una alterata secrezione di vasopressina, può determinare danni anche molto gravi all’organismo:

  • un aumentato livello di vasopressina configura la sindrome da inappropriata produzione di ormone antidiuretico (SIADH) che decorre con iposodiemia. Si possono riscontrare in patologie neurologiche e in caso di microcitoma polmonare, un tumore che può secernere sostanze ad attività ormonale tra cui la vasopressina;
  • una diminuzione del rilascio di vasopressina o una diminuita sensibilità dei reni all’ormone determina diabete insipido, una condizione caratterizzata da ipersodiemia(aumento del sodio nel sangue), poliuria (aumentata produzione di urina) e conseguente polidipsia (sete);
  • alcuni medicamenti preoperatori come gli oppiacei, ossitocina, antiemetici determinano un’aumentata secrezione di vasopressina che può causare una moderata iposodiemia per alcuni giorni;
  • la vasopressina ha un ruolo nell’idrope dell’orecchio interno e nella sindrome di Mèniére.

Leggi anche:

Dott. Emilio Alessio Loiacono
Medico Chirurgo
Direttore dello Staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o unisciti al nostro gruppo Facebook o ancora seguici su Twitter, su Instagram, su Mastodon, su YouTube, su LinkedIn, su Tumblr e su Pinterest, grazie!

Lascia un commento

Questo sito utilizza Akismet per ridurre lo spam. Scopri come vengono elaborati i dati derivati dai commenti.