Noradrenalina: cos’è ed a cosa serve?

MEDICINA ONLINE SINAPSI SISTEMA NERVOSO ACETILCOLINA NORADRENALINA DOPAMINA NEUROTRASMETTITORI CERVELLO SISTEMA NERVOSO AUTONOMO CENTRALE SIMPATICO PARASIMPATICO NEURONI GLIA CERVELLETTO SNC ORMONILa noradrenalina, anche chiamata norepinefrina, è un ormone e un neurotrasmettitore prodotto in buona parte dalle terminazioni nervose centrali e periferiche su stimolo della tirosina (ormone tiroideo), e per il resto dalle ghiandole surrenali. Questo specifico ormone, che lavora in “accordo” con l’adrenalina, viene prodotto massicciamente in condizioni di importanti stress psicofisici perché ha il compito di stimolare la contrattilità del muscolo cardiaco aumentando la frequenza del battito e di indurre la produzione del glucagone a livello metabolico con conseguenze calo dei livelli di insulina. Lo scopo è quello di fornire un surplus energetico al corpo in caso di necessità. In effetti la noradrenalina fa parte di quel meccanismo naturale di reazione ad uno stress che il corpo mette in atto in situazioni come: trauma da incidente, shock emorragico, riduzione delle riserve energetiche con indebolimento, ustioni, interventi chirurgici e naturalmente grandi sforzi fisici ed eventi traumatici sotto il profilo psicologico (ad esempio grandi spaventi).

Quando i livelli di norepinefrina aumentano all’improvviso nel corpo, aumentano anche la reattività e la vigilanza, e accelera il metabolismo perché l’organismo si pone in quella condizione definita di “attacco o fuga”, ovvero ha necessità di aumentare i livelli di energia subito disponibili e di attenzione in vista di un pericolo da cui scappare o di un ostacolo da superare. Ovviamente in condizioni normali questi meccanismi si attuano in modo del tutto automatico quando è necessario, ma senza perdurare nel tempo perché tale stato di tensione e di allarme affatica il corpo e in particolare il cuore.

Altri effetti fisiologici dell’aumento della noradrenalina nel sangue sono la dilatazione delle pupille e l’aumento della sudorazione, così come una reazione di termogenesi che induce un più rapido consumo dei grassi accumulati, sempre all’interno del meccanismo che spinge ad un recupero di energia corporea superiore alla norma.

La noradrenalina di sintesi viene somministrata nelle terapie mediche di’urgenza per il trattamento di shock cardiaci, shock settici e collasso. Un aumento ingiustificato dei valori di noradrenalina (e di adrenalina), nel sangue (ovvero che superino i 100 mg per millilitro di sangue) possono indicare squilibri endocrini (ad esempio della tiroide), e malattie delle ghiandole surrenali tra cui tumori.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Meccanismo d’azione della cocaina: il reuptake della dopamina

Dott Emilio Alessio Loiacono Medico Chirurgo Specialista in Medicina Estetica Roma CERVELLO 75% DI ACQUA Radiofrequenza Rughe Cavitazione Peeling Pressoterapia Linfodrenante Dietologo Cellulite Dieta Pancia Sessuologia Sessualità Sex Filler BotulinoLa cocaina è uno psicostimolante che agisce a livello del sistema nervoso centrale (SNC).
Nel SNC, i neuroni, cellule del cervello, utilizzano delle sostanze chimiche, i neurotrasmettitori, per comunicare tra loro. Ad ogni stimolo si ha rilascio di neurotrasmettitori che comportano una risposta specifica. Uno dei neurotrasmettitori coinvolti nei fenomeni di dipendenza è la dopamina.
Questa viene rilasciata dai neuroni per dare una risposta a segnali naturali di piacere come potrebbero essere il richiamo del cibo, il sesso.
La dopamina rilasciata dai neuroni attiva una risposta, ovvero una sensazione di benessere. Una volta completata la sua funzione, la dopamina rilasciata in circolo, viene riciclata (“reuptake”) per ripristinare una condizione di normale equilibrio.

Leggi anche:

La ricaptazione della dopamina
Il meccanismo di azione della cocaina sembra essere dovuto principalmente ad una inibizione del “reuptake” (ricaptazione) della dopamina, ovvero del recupero da parte delle terminazioni neuronali della dopamina rilasciata in seguito a stimoli. Il risultato di questa azione di blocco del reuptake si manifesta come un aumento delle concentrazioni di dopamina libera tra le terminazioni neuronali nel cervello. Il neurotrasmettitore è così ancora in grado di stimolare il cervello e prolungare la sensazione di piacere ricercata dagli utilizzatori.
La dopamina, infatti, è uno dei principali neurotrasmettitori coinvolti nel meccanismo del piacere e della ricompensa nel nostro cervello. Le droghe di abuso agiscono generalmente in termini di aumento del rilascio della dopamina per provare sensazioni di piacere.

Per approfondire, leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Differenza tra acetilcolina e noradrenalina

MEDICINA ONLINE SINAPSI SISTEMA NERVOSO ACETILCOLINA NORADRENALINA DOPAMINA NEUROTRASMETTITORI CERVELLO SISTEMA NERVOSO AUTONOMO CENTRALE SIMPATICO PARASIMPATICO NEURONI GLIA CERVELLETTO SNC ORMONI.jpgL’attivazione del sistema ortosimpatico determina un dispendio di energie prontamente messe a disposizione dalla degradazione del glicogeno in glucosio, dall’idrolisi dei lipidi e dall’accelerazione dell’attività cardiaca; in tal modo l’organismo si prepara a reagire ad una condizione di forte stress, ad un trauma, a repentini sbalzi termici o ad un grave sforzo fisico (“reazione di attacco o fuga”). Questa risposta immediata ad una condizione sfavorevole è possibile perché l’ortosimpatico generalmente esplica la sua azione in maniera diffusa.

Il sistema parasimpatico, al contrario dell’ortosimpatico, si attiva in condizioni di recupero o riposo da parte dell’organismo; pertanto, questo sistema svolge un ruolo di fondamentale importanza per le funzioni digestive, per il recupero delle riserve energetiche e per il ripristino delle fisiologiche condizioni pressorie e cardiache. La risposta conseguente all’attivazione del parasimpatico è detta “di tipo settoriale”, cioè interessa un’area localizzata dell’organismo. Il parasimpatico, con la sua attività trofotropica, è quindi responsabile del mantenimento delle funzioni vitali dell’organismo.

In condizioni fisiologiche, le funzioni di orto e parasimpatico sono tra loro in equilibrio, ed eventuali situazioni di leggero squilibrio vengono fisiologicamente corrette attraverso “meccanismi di alto riflesso”, mirati – a seconda dei casi – ad aumentare o diminuire rispettivamente l’azione di orto e parasimpatico.

Un esempio può essere il comune calo pressorio: i barocettori vasali percepiscono tale abbassamento e trasmettono il segnale ai centri vasomotori a livello dell’encefalo, dove viene elaborata la risposta consistente in una riduzione dell’attività del parasimpatico (ricordiamo infatti che questo sistema provoca riduzione dell’attività cardiaca e vasodilatazione) e nel potenziamento dell’attività dell’ortosimpatico, che accresce il grado di contrazione della muscolatura liscia vasale riportando la pressione a valori fisiologici. In presenza di patologie conclamate si avrà un’errata prevalenza di un sistema sull’altro; la somministrazione di determinati farmaci va a correggere questo squilibrio.

La trasmissione dell’impulso nelle vie efferenti è mediata da neuroni pre-gangliari COLINERGICI, indifferentemente che siano dell’orto o del parasimpatico: ovvero rilasciano a livello sinaptico il neurotrasmettitore Acetilcolina (Ach). L’Ach interagisce con i recettori canale nicotinici presenti sui gangli; i recettori così attivati inviano l’impulso alle fibre post-gangliari, che giungono fino all’organo effettore rilasciando: quelle appartenenti al parasimpatico il neurotrasmettitore acetilcolina e quelle appartenenti all’ortosimpatico Noradrenalina (Nor).
L’innervazione somatica, che controlla tutta la muscolatura scheletrica, possiede fibre neuronali prive di gangli, originate dal midollo spinale (motoneuroni spinali), ma anch’esse colinergiche; quest’ultime interagiscono con recettori nicotinici “muscolari”, così denominati perché situati sui muscoli scheletrici. I recettori nicotinici muscolari si differenziano dai recettori nicotinici presenti sui gangli, perciò i farmaci che agiscono su tali recettori devono avere un’azione selettiva, viceversa si rischierebbe di compromettere l’intera trasmissione simpatica pre-gangliare. Un discorso a parte va fatto per la midollare del surrene, la cui innervazione simpatica si differenzia da tutti gli altri organi perché mancante del neurone post-gangliare; in altre parole, il neurone pre-gangliare libera Ach direttamente sul recettore nicotinico presente nella midollare del surrene, che rilascerà il neurotrasmettitore Adrenalina direttamente nel torrente ematico, attraverso cui raggiunge i suoi siti attivi interagendo con i recettori adrenergici.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Differenza tra sinapsi elettrica e chimica

MEDICINA ONLINE Dott Emilio Alessio Loiacono Medico Chirurgo Roma SINAPSI CHIMICA ELETTRICA COSO SONO SERV Riabilitazione Nutrizionista Infrarossi Accompagno Commissioni Cavitazione Radiofrequenza Ecografia Pulsata Macchie Capillari Ano PeneLe sinapsi chimiche hanno caratteristiche morfologicamente diverse da quelle elettriche. A livello delle sinapsi chimiche non esiste continuità citoplasmatica fra le cellule, i neuroni sono separati da una fessura sinaptica. Mentre nelle sinapsi elettrice i esistono particolari canali comunicanti che stabiliscono un ponte tra il citoplasma delle due cellule. La corrente passando in questi canali incontra bassa resistenza ed elevata conduttanza, e quindi la corrente deposita cariche positive sulla membrana della cellula postsinaptica depolarizzandola.

Nelle sinapsi chimiche la corrente uscente nelle cellula presinaptica esce semplicemente all’esterno attraverso i canali passivi, e non tenderà ad attraversare la membrana della cellula postsinaptica che ha resistenza elevata. Il potenziale di azione che arriva nella terminazione di una sinapsi chimica determinerà invece la liberazione di una sostanza trasmettitrice che diffonderà attraverso la fessura sinaptica e andrà a legarsi con un recettore specifico che potrà depolarizzare o iperpolarizzare la cellula postsinaptica.

Per approfondire, leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Sistema dopamminergico: i circuiti nervosi della dopammina

medicina-online-dott-emilio-alessio-loiacono-medico-chirurgo-roma-sistema-dopamminegico-dopammina-circuiti-riabilitazione-nutrizionista-infrarossi-accompagno-commissioni-cavitazione-radiofrequenza-ecoI neuroni dopamminergici formano un sistema di neuromodulazione che ha origine nella substantia nigra, nell’area tegmentale ventrale (VTA), e nell’ipotalamo. Questi sono collegati tramite assoni ad ampie zone del cervello attraverso quattro percorsi principali:

  • La via mesolimbica collega l’area tegmentale ventrale al nucleus accumbens attraverso l’amigdala e l’ippocampo (entrambi al centro del sistema della ricompensa nel cervello). Si pensa che questa via controlli il comportamento e in modo particolare produca delirio ed allucinazioni quando iperattiva. È anche la via che regola il senso di gratificazione, coinvolto quindi nei fenomeni di dipendenza.
  • La via nigrostriatale, che controlla i movimenti, va dalla substantia nigra al striato. Il percorso è coinvolto nei gangli della base.
  • La via mesocorticale collega l’area tegmentale ventrale del mesencefalo alla corteccia pre-frontale; per il controllo di emozioni e sentimenti.
  • La via tubero-infundibolare collega l’ipotalamo alla ghiandola pituitaria. Controlla il rilascio di ormoni come la somatotropina (ormone della crescita) e il PIF (Prolactin Inhibiting Factor ovvero fattore inibente la prolattina).

Leggi anche:

Lo Staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o unisciti al nostro gruppo Facebook o ancora seguici su Twitter, su Instagram o su Pinterest, grazie!

Quali sono le funzioni della Dopamina?

MEDICINA ONLINE Dott Emilio Alessio Loiacono Medico Chirurgo Roma FUNZIONI DELLA DOPAMMINA Riabilitazione Nutrizionista Infrarossi Accompagno Commissioni Cavitazione Radiofrequenza Ecografia Pulsata  Macchie Capillari Ano Pene.jpgLa dopamina (o dopammina) ha molte funzioni, specie a livello del cervello dove svolge un ruolo importante in comportamento, cognizione, movimento volontario, motivazione, punizione, nell’inibizione della produzione di prolattina (coinvolta nell’allattamento materno e nella gratificazione sessuale), sonno, umore, attenzione, memoria di lavoro e di apprendimento. Agisce sul sistema nervoso simpatico causando l’accelerazione del battito cardiaco e l’innalzamento della pressione del sangue. La dopammina viene rilasciata a livello centrale dalla substantia nigra e la sua azione è mirata a modulare l’attività inibitoria dei neuroni GABAergici. Neuroni dopamminergici (cioè, i neuroni il cui principale neurotrasmettitore è la dopammina) sono presenti soprattutto nella zona tegmentale ventrale del mesencefalo, nella substantia nigra, e nel nucleo arcuato dell’ipotalamo.

Dopammina e ricompensa

Stimoli che producono motivazione e ricompensa (fisiologici quali i rapporti sessuali, la masturbazione, il cibo ricco di calorie, l’acqua, o artificiali come sostanze stupefacenti, o elettrici ma anche l’ascolto della musica), stimolano parallelamente il rilascio di dopammina nel nucleus accumbens. Al contrario il piacere prodotto da questi stimoli è soppresso da lesioni dei neuroni dopamminergici o dal blocco dei recettori alla dopammina in questa stessa area. Si è visto che bloccando il recettore D2, si ottiene ancora la liberazione di dopammina e la trasmissione del piacere incrementa. Su questo principio si basa la cura della depressione, che consiste nel bloccare il recettore D2 e fare liberare quanta più dopammina possibile, per risollevare il tono dell’umore in modo farmacologico.

Auto somministrazione di sostanze

Il nucleus accumbens, funzionalmente integrato nelle circuitazioni limbiche ed extra-piramidali, svolge un ruolo critico nel mediare gli effetti di rinforzo positivo acuto (soddisfazione) delle sostanze stupefacenti d’abuso, e negli aspetti motivazionali della sospensione, dopo assunzione in cronico, quindi nel rinforzo negativo (punizione), proprio del fenomeno astinenziale. La dopammina è coinvolta nel determinare le proprietà motivazionali delle sostanze attive a livello del SNC. Sostanze come le amfetamine e la cocaina, stimolando i recettori D1 e D2, aumentano il tono dopamminergico, stimolandone il rilascio sinaptico e/o bloccandone la ricaptazione neuronale. La nicotina e altri alcaloidi contenuti nelle sigarette agiscono in maniera analoga. Alcuni studi neuro-farmacologici hanno indicato che le caratteristiche di rinforzo positivo della cocaina sono bloccate dalla somministrazione d’antagonisti dei recettori dopamminergici.

Leggi anche:

Dott. Emilio Alessio Loiacono
Medico Chirurgo
Direttore dello Staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o unisciti al nostro gruppo Facebook o ancora seguici su Twitter, su Instagram, su YouTube, su LinkedIn, su Tumblr e su Pinterest, grazie!

Dopammina: biosintesi, rilascio nello spazio sinaptico e degradazione

MEDICINA ONLINE Dott Emilio Alessio Loiacono Medico Chirurgo Roma 10 DOPAMMINA BIOSINTESI RILASCIO DEGRADA Riabilitazione Nutrizionista Infrarossi Accompagno Commissioni Cavitazione Radiofrequenza Ecografia Pulsata  Macchie Capillari Ano Pene.jpgmedicina-online-dott-emilio-alessio-loiacono-medico-chirurgo-roma-10-dopammina-biosintesi-rilascio-degrada-riabilitazione-nutrizionista-infrarossi-accompagno-commissioni-cavitazione-radiofrequenza-ecoLa dopammina è biosintetizzata soprattutto nel tessuto nervoso e nel midollare del surrene. La biosintesi di questo importante neurotrasmettitore è divisa in varie fasi. In primo luogo avviene l’idrossilazione dell’amminoacido L-tirosina (un amminoacido normalmente presente nella dieta) in L-DOPA attraverso l’enzima tirosina 3-monoossigenasi, rappresentato dall’aggiunta di un secondo ossidrile all’anello benzenico della tirosina. In seguito avviene la decarbossilazione della L-DOPA da aromatici L-ammino acido decarbossilasi (spesso definito come dopa decarbossilasi), rimuovendo il gruppo carbossilico (-COOH) dalla catena laterale della DOPA. In alcuni neuroni, la dopammina viene trasformata in noradrenalina da parte della dopammina β-idrossilasi. Nei neuroni, la dopammina è confezionata dopo la sintesi, in vescicole sinaptiche che vengono poi rilasciate nelle sinapsi in risposta a un potenziale d’azione presinaptico.

Leggi anche:

Immagazzinamento nelle vescicole sinaptiche e rilascio nello spazio sinaptico di dopammina

La dopammina sintetizzata nel citoplasma viene catturata e concentrata all’interno delle vescicole sinaptiche. L’immagazzinamento dentro le vescicole ha lo scopo di proteggere la molecola dalla degradazione a opera della monoamminossidasi, ed è indispensabile per il processo di liberazione del neurotrasmettitore nello spazio sinaptico da parte dell’impulso nervoso. All’arrivo di questo, le vescicole per effetto dell’onda di depolarizzazione, fondono la loro membrana con quella del neurone e si aprono, liberando il loro contenuto nello spazio sinaptico. In generale, gli antagonisti dopamminergici inibiscono, mentre gli agonisti aumentano, il rilascio di dopammina dalla terminazione nervosa.

Degradazione

L’azione della dopammina rilasciata nello spazio sinaptico viene rapidamente ricaptata da parte della terminazione nervosa da cui è stata liberata; una volta ricatturata, la dopammina viene degradata attraverso due principali diversi meccanismi:

  • La dopammina(DA) viene deamminata dalla MAO e diventa 3,4-diidrossifenilacetaldeide (DHPA), è quindi convertita a opera di un’aldeide deidrogenasi in acido 3,4-diidrossifenilacetico (DOPAC). Successivamente viene trasformata in acido omovanillico (HVA) al di fuori del neurone mediante una doppia conversione enzimatica tramite la catecol-O-metiltrasferasi (COMT) prima e la MAO poi.
  • La dopammina viene metilata in posizione 3 dell’anello benzenico dalla COMT e trasformata in 3-metossitirammina, (3MT). Questa viene poi deamminata dalla monoamminossidasi e forma la 3-metossi-4-idrossifenilacetaldeide (3MHPA), la quale viene trasformata dall’aldeide deidrogenasi in HVA.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Neurotrasmettitori: cosa sono ed a che servono

Dott Emilio Alessio Loiacono Medico Chirurgo Specialista in Medicina Estetica Roma CERVELLO 75% DI ACQUA Radiofrequenza Rughe Cavitazione Peeling Pressoterapia Linfodrenante Dietologo Cellulite Dieta Pancia Sessuologia Sessualità Sex Filler BotulinoUn neurotrasmettitore è una sostanza che trasmette le informazioni tra le varie cellule che compongono il nostro sistema nervoso, cioè i neuroni, attraverso la trasmissione sinaptica. All’interno del neurone, i neurotrasmettitori sono contenuti in vescicole dette vescicole sinaptiche che sono addensate alle estremità distali dell’assone nei punti in cui esso contrae rapporto sinaptico con altri neuroni.

Leggi anche:

Cosa avviene quando al neurone giunge uno stimolo?
Nel momento in cui il neurone viene raggiunto da uno stimolo:

  1. le vescicole sinaptiche si fondono per esocitosi con la membrana pre-sinaptica,
  2. le vescicole sinaptiche riversano il proprio contenuto nello spazio sinaptico o fessura inter-sinaptica
  3. i neurotrasmettitori rilasciati si legano a recettori o a canali ionici localizzati sulla membrana post-sinaptica
  4. l’interazione fra i neurotrasmettitore e il recettore/canale ionico scatena una risposta eccitatoria o inibitoria nel neurone post-sinaptico.

In relazione al tipo di risposta prodotta, i neurotrasmettitori possono essere eccitatori o inibitori (chiamati anche soppressori), cioè possono rispettivamente promuovere la creazione di un impulso nervoso nel neurone ricevente o inibire l’impulso. Tra i neurotrasmettitori inibitori, i più noti sono l’acido gamma-amminobutirrico (GABA) e la glicina. Al contrario, il glutammato rappresenta il più importante neurotrasmettitore eccitatorio del cervello.

Ricaptazione (reuptake)
Molti neurotrasmettitori vengono rimossi dallo spazio tra le sinapsi da specifiche proteine che risiedono nelle membrane dei neuroni e delle cellule della glia. Questo processo prende il nome di ricaptazione (reuptake) o, spesso più semplicemente, captazione (uptake). Senza la ricaptazione, i neurotrasmettitori potrebbero continuare a stimolare o deprimere il neurone post-sinaptico. Un altro meccanismo di rimozione dei neurotrasmettitori è la loro distruzione tramite un enzima. Ad esempio, nelle sinapsi colinergiche (quelle del neurotrasmettitore acetilcolina) l’enzima acetilcolinesterasi distrugge l’acetilcolina.

Leggi anche:

Tipi di neurotramettitori
Sulla base della dimensione, i neurotrasmettitori possono essere distinti in neuropeptidi e piccole molecole. I neuropeptidi comprendono dai 3 ai 36 amminoacidi, mentre nel gruppo delle piccole molecole ci sono amminoacidi singoli, come il glutammato ed il GABA e i neurotrasmettitori come l’acetilcolina, la serotonina e l’istamina. I due gruppi di neurotrasmettitori presentano anche modalità di sintesi e rilascio differenti.

Farmaci e neurotrasmettitori
Farmaci, droghe ed altre sostanze possono interferire con il funzionamento dei neurotrasmettitori. Molte sostanze stimolanti e anti-depressive alterano la trasmissione dei neurotrasmettitori dopamina, norepinefrina (o noradrenalina) e epinefrina (adrenalina), chiamati nel complesso catecolamine. Ad esempio, la cocaina blocca la ricattura della dopamina, consentendole di rimanere più a lungo nello spazio inter-sinaptico. In particolare, la cocaina altera i circuiti dopaminergici del nucleus accumbens, una regione del cervello che è coinvolta nella spinta motivazionale e nel rafforzamento emozionale. La reserpina, che è stata impiegata dapprima come agente anti-ipertensivo e successivamente come antipsicotico nel trattamento della schizofrenia, causando una deplezione di neurotrasmettitori mediante la rottura delle vescicole sinaptiche e la degradazione da parte delle monoammino ossidasi (MAO-A e MAO-B). Infine, l’AMPT impedisce la conversione della tirosina in L-DOPA ed il deprenile inibisce l’azione della monoammina ossidasi B, aumentando il livello della dopamina tra le sinapsi.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!