Talassemia: cos’è, sintomi, cure, differenti tipi ed alimentazione

Dott. Loiacono Emilio Alessio Medicina Chirurgia Estetica Benessere Dietologia Sessuologia Ecografie Anemia da carenza di ferro cause, sintomi e cureNella talassemia l’organismo si trova a sintetizzare una forma anomala di emoglobina. Quest’ultima è una proteina contenuta nei globuli rossi e che svolge un ruolo importante per il trasporto dell’ossigeno. Nei soggetti affetti dalla malattia i globuli rossi vanno incontro ad un processo di distruzione, provocando l’anemia. Ecco perché la patologia è chiamata anche anemia mediterranea. Fra i sintomi si notano anche l’affaticamento, un deficit della crescita, un senso di irritabilità e l’ittero. Non ci sono cure, in termini di farmaci in grado di cambiare il decorso della malattia. Si deve fare ricorso alle trasfusioni di sangue o al trapianto del midollo osseo.

I sintomi
Fra i sintomi della talassemia più caratteristici c’è di certo l’anemia. Inoltre i soggetti vanno incontro facilmente ad un senso di affaticamento, ad un’alterazione dell’umore, che si manifesta sotto forma di irritabilità. Le altre manifestazioni sintomatologiche sono costituite da deficit della crescita, ittero e urine scure.
Nei casi più gravi si possono avere delle vere e proprie deformità ossee, che interessano soprattutto la faccia e il cranio. Inoltre si può soffrire di una certa fragilità ossea, aumentando il rischio di andare incontro alle fratture.
E’ possibile che nei pazienti si verifichi un accumulo di ferro, anche a causa delle trasfusioni a cui si deve fare ricorso. Inoltre si può manifestare un fenomeno di splenomegalia, un aumento del volume della milza.

Leggi anche:

Le tipologie
Esistono differenti tipologie di talassemia. Nella forma alfa sono implicati diversi geni, fino ad un totale di 4. La gravità della patologia è strettamente collegata al numero dei geni coinvolti: più essi sono, più gravi sono le conseguenze.
Se è coinvolto un solo gene, non si hanno sintomi, ma si è portatore sano: la malattia può essere trasmessa ai figli. Nella forma minor vengono coinvolti due geni, con una sintomatologia lieve. Drammatico è l’esito nel caso dell’implicazione di 4 geni (forma alfa major): il neonato in genere muore prima di nascere o subito dopo il parto.
Si parla di talassemia beta, quando sono coinvolte le catene beta del cromosoma 11. Si deve operare, anche in questo caso, una distinzione tra una forma minor (coinvolgimento di un gene) e di una major (coinvolgimento di due geni). Nella prima ci sono solo sintomi lievi, nella seconda il quadro è più severo e si manifesta circa all’età di due anni.

Le cure
Nonostante tutti i progressi della scienza medica, non esistono delle cure per la talassemia, in quanto essa è una malattia ereditaria. Non è disponibile un farmaco per mutare le condizioni implicate nella produzione della forma anomala di emoglobina. L’unica possibilità che può essere presa in considerazione consiste nel trapianto del midollo osseo. In ogni caso questo è consigliato solo nei casi più gravi, quando l’organismo è soggetto a disfunzioni dalle mille complicanze.
In alternativa ci si deve sottoporre regolarmente a delle trasfusioni di sangue. Tutto ciò comunque può far aumentare il livello di ferro e quindi è opportuno servirsi di una terapia specifica con farmaci adeguati.

L’alimentazione
L’alimentazione in caso di talassemia deve essere sana. In particolare si dovrebbe prestare attenzione a non consumare cibi troppo ricchi di ferro, come, ad esempio, la carne rossa. Teniamo presente che, in linea generale, la dose di ferro raccomandata al giorno è pari a 18 mg. Ecco perché si deve leggere bene l’etichetta dei vari cibi.
Una regola consigliabile è quella di bere durante i pasti, perché esso è in grado di diminuire l’assorbimento intestinale del ferro. I cibi da evitare sono: fegato, carne di maiale e bovina, fagioli, cereali, ostriche e burro di arachidi.
Da ridurre anche il consumo dei seguenti ortaggi: verdure a foglia verde, spinaci, prugne, anguria, broccoli, piselli, fave.

Leggi anche:

Lo Staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o unisciti al nostro gruppo Facebook o ancora seguici su Twitter, su Instagram o su Pinterest, grazie!

Lisosomi: cosa sono? Significato e dimensioni

MEDICINA ONLINE Dott Emilio Alessio Loiacono Medico Chirurgo Roma DIFFERENZE CELLULE EUCARIOTE PROCARIOTE Riabilitazione Nutrizionista Infrarossi Accompagno Commissioni Cavitazione Radiofrequenza Ecografia Pulsata Macchie Capillari Ano PeneI lisosomi, vescicole che si formano nell’apparato del Golgi, sono essenzialmente sacchetti membranosi (delimitati da una membrana a doppio strato lipidico) che racchiudono enzimi idrolitici, in grado, nella digestione intracellulare, di tagliare in maniera specifica e controllata grosse molecole.

Gli enzimi idrolitici dei lisosomi sono detti idrolasi acide e comprendono proteasi (che tagliano le proteine), nucleasi (che tagliano gli acidi nucleici), glicosidasi, lipasi ecc. Se i lisosomi si rompono, la cellula stessa viene distrutta, poiché gli enzimi che essi contengono sono capaci di scindere tutti i composti principali presenti nella cellula.

I lisosomi contengono ognuno idrolasi diverse, che svolgono l’ampia serie di differenti funzioni digestive. Le idrolasi dei lisosomi sono sintetizzate nel reticolo endoplasmatico, come le altre proteine, e trasferite in seguito nel lume dell’apparato del Golgi. I lisosomi si formano per gemmazione (si staccano come goccioline di membrana) dalle cisterne più esterne dell’apparato del Golgi. Bisogna distinguere fra due classi generali di lisosomi: i lisosomi primari, appena formati e non ancora fusi con altre vescicole contenenti i materiali da digerire; e i lisosomi secondari, che derivano da ripetute fusioni di lisosomi con altre vescicole. In questo secondo tipo sono contenuti enzimi, materiale da digerire e materiale digerito.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Differenza tra citosol e citoplasma

MEDICINA ONLINE Dott Emilio Alessio Loiacono Medico Chirurgo Roma DIFFERENZE CELLULE EUCARIOTE PROCARIOTE Riabilitazione Nutrizionista Infrarossi Accompagno Commissioni Cavitazione Radiofrequenza Ecografia Pulsata Macchie Capillari Ano PeneL’intero volume della cellula, con esclusione del nucleo, è occupato dal citoplasma. Il citoplasma è quindi tutta la porzione di una cellula (eucariote o procariote) delimitata da l’interno della membrana cellulare fino al nucleo. All’interno di questa porzione cellulare vi sono organuli (o organelli) cellulari dispersi in una matrice fluida detta citosol, costituito da soluzione acquosa concentrata. Il citosol è quindi una parte del citoplasma.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Differenza tra mitocondri e cloroplasti

Dott Emilio Alessio Loiacono Medico Chirurgo Estetico Medicina Estetica Roma COME UN FILO DERBA NELLASFALTO ED IL CEMENTO Pelle Cute Radiofrequenza Cavitazione Cellulite Pulsata Peeling Pressoterapia Linfodrenante Tecarterapia Dietologo DermatologoIl mitocondrio (in inglese “mitochondrion”, al prurale “mitochondria”) è un organello della cellula eucariote umana. E’ una vera e propria “centrale energetica” cellulare: produce l’energia necessaria per molte funzioni cellulari, quali il movimento ed il trasporto di sostanze. I mitocondri contengono gli enzimi necessari per far avvenire le reazioni chimiche che recuperano l’energia contenuta negli alimenti e l’accumulano in speciali molecole di adenosintrifosfato (ATP), nelle quali si conserva concentrata e pronta all’uso. Il compito dei mitocondri è quello di completare la demolizione delle molecole ingerite come fonte di energia. Infatti, nel citosol gli zuccheri vengono demoliti con reazioni che non utilizzano ossigeno, per cui la digestione è parziale e la resa in energia bassa. Nei mitocondri il metabolismo degli zuccheri (ma anche quello dei lipidi) si completa con la loro ossidazione (ciclo di Krebs). I prodotti di questa reazione vengono utilizzati dalla catena di trasporto degli elettroni per produrre molecole ad alta energia (ATP). In questo modo, l’energia immagazzinata nelle molecole di ATP è molto più alta: infatti da ogni molecola di glucosio vengono prodotte 36 molecole di ATP, mentre la glicolisi a livello del citosol ne produce soltanto 2.

Leggi anche:

I cloroplasti (in inglese “chloroplast”, al plurare “chloroplasts”) sono organelli cellulari che si trovano invece negli organi fotosintetici delle piante (foglie e fusti verdi) e nelle alghe eucariotiche; in essi avviene il processo di fotosintesi clorofilliana e sono visibili al microscopio come corpuscoli di colore verde (dovuto alla clorofilla). All’interno di questi organuli si svolge il processo della fotosintesi clorofilliana: l’energia luminosa del sole viene catturata dai pigmenti di clorofilla (e non solo) e viene convertita in energia chimica (ATP e NADPH). Durante la fotosintesi viene liberato ossigeno tramite la fotolisi di molecole d’acqua, e ciò consente di rifornire di ossigeno l’atmosfera terrestre. Similmente ai mitocondri, la loro origine è avvenuta a causa di una endosimbiosi tra cellule eucariotiche e cianobatteri (procarioti fotosintetici) avvenuta circa 1 miliardo di anni fa, e per questo i cloroplasti posseggono un proprio genoma (di tipo batterico) e si riproducono nella cellula in maniera indipendente.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Citosol: definizione e funzioni

MEDICINA ONLINE Dott Emilio Alessio Loiacono Medico Chirurgo Roma DIFFERENZE CELLULE EUCARIOTE PROCARIOTE Riabilitazione Nutrizionista Infrarossi Accompagno Commissioni Cavitazione Radiofrequenza Ecografia Pulsata Macchie Capillari Ano PeneIl citosol è la sostanza gelatinosa che, assieme agli organelli, costituisce il citoplasma, cioè la porzione interna della cellula. Nel citosol si svolge gran parte del metabolismo cellulare. Esso costituisce il 50% del volume di una cellula e contiene proteine enzimatiche che catalizzano varie reazioni: dalla demolizione degli zuccheri alla sintesi dei grassi, dei nucleotidi, degli zuccheri e delle proteine.

Nel citosol si accumulano le sostanze di deposito, per esempio, il glicogeno, la forma di immagazzinamento dei carboidrati, o i trigliceridi, la forma di accumulo dei lipidi. Negli adipociti questi ultimi si presentano come una goccia che può occupare quasi completamente il citosol.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Apparato del Golgi: spiegazione semplice e funzioni

MEDICINA ONLINE Dott Emilio Alessio Loiacono Medico Chirurgo Roma DIFFERENZE CELLULE EUCARIOTE PROCARIOTE Riabilitazione Nutrizionista Infrarossi Accompagno Commissioni Cavitazione Radiofrequenza Ecografia Pulsata Macchie Capillari Ano PeneL’apparato del Golgi si trova in genere vicino al nucleo ed è formato da numerosi gruppi di cisterne appiattite, delimitate da membrane, impilate una sull’altra e circondate da tubuli e vescicole.

Esso ha due facce distinte: una di formazione, o cis, che è strutturalmente associata con la porzione liscia del reticolo endoplasmatico; e una di maturazione, o trans, che è quella rivolta verso la membrana cellulare dalla quale gemmano grosse vescicole di secrezione.

La funzione dell’apparato del Golgi è di indirizzare il traffico delle molecole appena sintetizzate verso le giuste destinazioni, dopo aver operato le modificazioni necessarie a ottenere la conformazione definitiva delle varie molecole. In particolare, le catene di zuccheri precedentemente legate alle proteine nel reticolo endoplasmatico vengono ampiamente modificate con l’aggiunta o l’asportazione di determinati residui di carboidrati.

Leggi anche:

Riassumendo, vediamo il percorso che una proteina di secrezione o di membrana deve compiere all’interno di una cellula. La proteina viene sintetizzata a livello dei ribosomi collegati al reticolo endoplasmatico ruvido, e passa all’interno del lume del reticolo dove le vengono legate le catene di carboidrati. Da qui passa nel reticolo endoplasmatico liscio, dove, tramite vescicole che si generano dal reticolo stesso, viene trasferita alla faccia cis dell’apparato del Golgi.

Le vescicole si fondono con le cisterne dell’apparato del Golgi e la proteina si trova nel lume di questo organulo dove subisce in vario modo modificazioni della struttura e dei componenti glicidici. Tali modificazioni avvengono seguendo un percorso all’interno delle cisterne, e portano infine la proteina, che ha assunto la sua struttura definitiva, verso la faccia trans dell’apparato del Golgi. Da qui le proteine vengono allontanate in modo selettivo, tramite vescicole, e raggiungono la loro destinazione “operativa”: sono secrete negli spazi extracellulari, o diventano parte integrante della componente proteica della membrana cellulare o degli organuli cellulari.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Membrana plasmatica: definizione e funzioni

MEDICINA ONLINE Dott Emilio Alessio Loiacono Medico Chirurgo Roma DIFFERENZE CELLULE EUCARIOTE PROCARIOTE Riabilitazione Nutrizionista Infrarossi Accompagno Commissioni Cavitazione Radiofrequenza Ecografia Pulsata Macchie Capillari Ano PeneLa membrana plasmatica, che avvolge ogni cellula, oltre a definirne l’entità, ha il ruolo principale di separare ciò che sta al suo interno da ciò che sta all’esterno. Si crea così la possibilità di organizzare in maniera ordinata le attività chimiche già citate.

La membrana plasmatica non costituisce solo una barriera passiva, ma è in grado di regolare il passaggio di sostanze che la attraversano. La sua funzione è quindi anche quella di filtro selettivo capace di mantenere concentrazioni di ioni diverse fra interno ed esterno e di lasciare entrare le sostanze nutritive, facendo uscire i rifiuti: ciò permette di mantenere le condizioni in cui possono svolgersi le attività metaboliche.

Analogamente, le membrane interne che delimitano gli organelli (i mitocondri, il nucleo ecc.) controllano il passaggio di sostanze differenti tra i comparti cellulari, regolando così l’ambiente interno. Il controllo di questi scambi dipende dalle proprietà chimico-fisiche delle membrane e delle molecole che le attraversano. Tutte le membrane di una cellula (membrana plasmatica, membrana nucleare, e quelle che delimitano gli organelli interni) hanno una identica struttura: sono composte da un doppio strato di lipidi, la cui componente maggiore è rappresentata da fosfolipidi, ma sono presenti anche steroidi e glicolipidi, che si dispongono spontaneamente, per le proprietà dei lipidi, con le estremità idrofobiche rivolte verso l’interno. Il doppio strato ha la proprietà di autosigillarsi e formare un involucro chiuso dotato di una considerevole resistenza meccanica. Questa struttura funge da barriera per la maggior parte delle molecole biologiche solubili in acqua (aminoacidi, zuccheri, proteine e acidi nucleici) e per gli ioni inorganici.

Nel doppio strato sono inserite numerose proteine che mediano le diverse funzioni della membrana: alcune servono per trasportare dentro e fuori della cellula determinate molecole; altre sono enzimi, che catalizzano reazioni associate alla membrana; altre ancora servono per collegare lo scheletro della cellula con la membrana; o ancora, agiscono da recettori per captare e trasdurre i segnali chimici provenienti dall’ambiente. Il tipo e la quantità di proteine presenti varia da membrana a membrana, conferendo la capacità di svolgere funzioni differenti. Dunque membrane di cellule diverse o di organelli diversi avranno una componente proteica differente e, in misura minore, anche una composizione variabile dei lipidi.

Leggi anche:

La struttura delle membrane è dinamica: si presenta infatti abbastanza fluida, e possiamo immaginare le proteine quasi come galleggianti in un “mare” di lipidi. La maggior parte delle molecole lipidiche e proteiche sono capaci di muoversi rapidamente sul piano della membrana. Non avvengono quasi mai, invece, scambi tra molecole di strati opposti. Poiché le due superfici della membrana cellulare, quella rivolta verso l’interno della cellula e quella rivolta verso lo spazio extracellulare, differiscono notevolmente per composizione chimica, e poiché è difficile che ci siano scambi di molecole fra i due strati, la membrana presenta una struttura asimmetrica, che riflette le diverse funzioni assolte dalle due superfici.

Le proteine che attraversano la membrana, per potersi ancorare alla porzione interna idrofobica del doppio strato lipidico devono contenere anch’esse una parte costituita da aminoacidi idrofobici, che non saranno respinti dai lipidi. Queste proteine sono dette transmembrana. Altre proteine sono esposte solo su una faccia del doppio strato oppure sono legate con un legame forte direttamente ai lipidi di membrana.

Tutte le membrane della cellula eucariote presentano, inoltre, molecole di carboidrati, sotto forma di catene di zuccheri complessi legate con legami forti alle proteine della membrana (glicoproteine) o ai lipidi (glicolipidi). La distribuzione degli zuccheri accentua i caratteri di asimmetricità della membrana cellulare: infatti le catene glicidiche sono presenti esclusivamente sul lato rivolto all’esterno della cellula. Si crea così una zona periferica ricca di carboidrati, che riveste la cellula ed è detta mantello cellulare.

La diffusione di molecole all’interno delle membrane in alcuni casi risulta limitata, perché determinate cellule, come per esempio, quelle degli epiteli, per poter svolgere le loro funzioni devono mantenere caratteristiche diverse a un polo della cellula rispetto all’altro. Inoltre le cellule epiteliali si uniscono strettamente fra loro a formare uno strato compatto, affinché non ci sia diffusione di molecole passanti nello spazio tra due diverse cellule.

L’epitelio intestinale, per esempio, ha una superficie rivolta verso il lume intestinale e l’altra rivolta verso il sangue; poiché le cellule dell’epitelio intestinale devono trasportare materiali utili (e solo quelli) dall’intestino al sangue, devono essere unite senza spazi fra loro e sono perciò tenute aderenti mediante un insieme di strutture che si trovano sulla membrana, dette giunzioni strette. Le giunzioni strette possono essere paragonate a una fascia circolare situata dentro la membrana cellulare. Le fasce circolari di due o più cellule aderiscono fra loro formando un’unica struttura, che impedisce il passaggio di qualsiasi molecola, ioni inorganici compresi. Questa fascia circolare divide anche la membrana cellulare in due porzioni: le proteine di membrana possono muoversi liberamente all’interno di una porzione, ma non possono passare all’altra. La separazione delle due parti mantiene l’asimmetria funzionale, di cui si è detto. Riprendendo l’esempio delle cellule dell’epitelio intestinale, nella porzione cellulare rivolta verso il lume dell’intestino troveremo proteine che sono in grado di trasportare attivamente il glucosio all’interno della cellula, mentre nella porzione rivolta verso i capillari sanguigni ci sono proteine che formano canali attraverso i quali il glucosio transita passivamente verso il sangue.
È evidente che, se nella cellula devono entrare sostanze nutritive e devono uscirne materiali di rifiuto, in qualche modo tali sostanze devono attraversare la membrana. Come ciò avvenga vedremo nel paragrafo sulla fisiologia cellulare.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Perossisomi: definizione e funzioni

MEDICINA ONLINE Dott Emilio Alessio Loiacono Medico Chirurgo Roma DIFFERENZE CELLULE EUCARIOTE PROCARIOTE Riabilitazione Nutrizionista Infrarossi Accompagno Commissioni Cavitazione Radiofrequenza Ecografia Pulsata Macchie Capillari Ano PeneI perossisomi sono organuli di circa 0,5-1 µm di diametro simili ai lisosomi, dai quali differiscono per il contenuto enzimatico. I perossisomi contengono le catalasi, enzimi specializzati per effettuare reazioni ossidative, che impiegano l’ossigeno molecolare. Il perossisoma, con il mitocondrio, è il principale sito di utilizzazione dell’ossigeno nella cellula. Grossi perossisomi delle cellule del fegato e del rene sono importanti nel neutralizzare la tossicità di numerose molecole, ossidandole (per esempio, quasi la metà dell’alcol che beviamo viene neutralizzata nei perossisomi). I perossisomi elaborano al loro interno il perossido di idrogeno (H2O2), da cui presero il nome. Il perossido di idrogeno ha potere lesivo nei confronti di microrganismi ed interviene in alcuni processi di detossificazione.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!