Differenze tra ipotalamo, ipofisi, neuroipofisi e adenoipofisi

MEDICINA ONLINE Dott Emilio Alessio Loiacono Medico Chirurgo Roma DIFFERENZE IPOTALAMO IPOFISI NEURO ADENO ORMONI Riabilitazione Nutrizionista Infrarossi Accompagno Commissioni Cavitazione Radiofrequenza Ecografia Pulsata  Macchie Capillari Ano Pene.jpgL’ipotalamo e l’ipofisi sono due strutture anatomiche, strettamente collegate fra loro, situate alla base del cranio. Si tratta di due strutture che rappresentano la più importante area di interconnessione fra il sistema nervoso e il sistema endocrino da cui partono gli impulsi e gli stimoli ormonali che governano l’intero sistema endocrino.
L’ipotalamo è un centro che, nel nostro corpo, regola il ritmo sonno/veglia, la fame, la sete e la temperatura corporea.
L’ipotalamo, inoltre, produce delle sostanze (neuroormoni) che stimolano la parte anteriore dell’ipofisi (adenoipofisi) a produrre degli ormoni detti tropine ipofisarie i quali, a loro volta, stimolano altre ghiandole endocrine a produrre altri ormoni. Questi ultimi, infine, agiscono a livello dell’ipotalamo e dell’ipofisi regolando, a loro volta, la produzione degli stessi neuroormoni e delle stesse tropine ipofisarie.

Leggi anche:

Altri ormoni prodotti da cellule dell’ipotalamo, infine, possono essere liberati direttamente nella parte posteriore dell’ipofisi (neuroipofisi).
Si tratta, pertanto, di una complessa rete di interazioni e di scambio di informazioni che serve per controllare molte funzioni vitali per il nostro organismo.
In questo modo, infatti, il sistema ipotalamo-ipofisi è in grado di controllare in modo diretto l’accrescimento corporeo, l’allattamento dopo la gravidanza e l’introduzione di liquidi e, in modo indiretto, il metabolismo basale (agendo sulla tiroide), la risposta allo stress (agendo sui surreni) e la funzione sessuale (agendo sui testicoli e sulle ovaie).

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Ipotalamo: anatomia, struttura e funzioni

MEDICINA ONLINE Dott Emilio Alessio Loiacono Medico Chirurgo Roma IPOTALAMO ANATOMIA FUNZIONI IN SINTESI Riabilitazione Nutrizionista Infrarossi Accompagno Commissioni Cavitazione Radiofrequenza Ecografia Pulsata  Macchie Capillari Ano Pene.jpgL’ipotalamo (hypothalamus in inglese) è una struttura del SNC (sistema nervoso centrale), situata nella zona centrale interna ai due emisferi cerebrali, e costituisce la parte ventrale del diencefalo. L’ipotalamo comprende molti nuclei che attivano, controllano e integrano i meccanismi autonomici periferici, l’attività endocrina e molte funzioni somatiche tra cui:

  • la termoregolazione;
  • il sonno;
  • il bilancio idro-salino;
  • l’assunzione del cibo.

Da quanto detto si comprende facilmente come l’ipotalamo rivesta un ruolo di primaria importanza nel controllo dell’omeostasi, cioè l’attitudine propria degli organismi viventi a conservare le proprie caratteristiche al variare delle condizioni esterne dell’ambiente tramite meccanismi di autoregolazione. Senza l’ipotalamo, la vita sarebbe letteralmente impossibile.

Leggi anche:

Dove si trova l’ipotalamo e con cosa confina?
L’ipotalamo è situato ai lati del terzo ventricolo cerebrale e si continua col suo pavimento, è delimitato posteriormente dai corpi mammillari, anteriormente dal chiasma ottico, superiormente dal solco ipotalamico e inferiormente dall’ipofisi, con la quale è a stretto contatto non solo anatomicamente ma anche funzionalmente. La superficie inferiore dell’ipotalamo si espande leggermente verso il basso formando il tuber cinereum, dal cui centro sporge l’infundibolo, riccamente vascolarizzato, che a sua volta si prolunga nell’ipofisi.

I tre gruppi nucleari dell’ipotalamo
Nel suo contesto, in senso antero-posteriore si possono riconoscere tre gruppi nucleari principali:

  • gruppo anteriore: comprende i nuclei sopraottico e paraventricolare
  • gruppo intermedio: in esso, prendendo come riferimento un piano sagittale passante per la colonna del fornice, possiamo distinguere una regione mediale (con i nuclei: ventromediale, dorsomediale, perifornicale e arcuato, il quale si estende nell’eminenza mediana) e una regione laterale (nuclei: ipotalamico laterale e tuberali laterali)
  • gruppo posteriore: comprende i corpi mamillari nei quali si distinguono i nuclei mamillari mediale, laterale e intermedio, e i nuclei ipotalamici posteriori.

Ipotalamo e ipofisi
Il rapporto tra ipotalamo e ipofisi è detto asse ipotalamo-ipofisario e collega il sistema nervoso al sistema endocrino o, per meglio dire, permette al primo di svolgere azioni di regolazione sul secondo.

Leggi anche:

Struttura e funzioni
L’ipotalamo è costituito da cellule di sostanza grigia raggruppate in numerosi nuclei, distinti topograficamente nei tre gruppi sopra descritti (anteriore, intermedio e posteriore), e collegati con la corteccia cerebrale e i centri del telencefalo, con il talamo e l’epitalamo, con il mesencefalo e il bulbo, da cui arrivano o ai quali vanno impulsi sensoriali vari e fibre nervose efferenti. L’ipotalamo svolge pertanto una duplice funzione:

  • una funzione di controllo del sistema nervoso autonomo (attraverso il quale modifica la motilità viscerale, i riflessi, il ritmo sonno-veglia, il bilancio idrosalino, il mantenimento della temperatura corporea, l’appetito e l’espressione degli stati emotivi);
  • una funzione di controllo del sistema endocrino: due dei nuclei ipotalamici (sopraottico e paraventricolare) collegano direttamente l’ipotalamo all’ipofisi tramite neuroni che, partendo da essi e terminando con i loro assoni nei capillari della neuroipofisi (porzione posteriore dell’ipofisi, minore per dimensioni), formano un fascio ipotalamo-neuroipofisario che unisce i due organi e forma così il suddetto asse ipotalamo-ipofisario.

I neuroni presenti nei due nuclei producono due ormoni, l’ossitocina che stimola la contrattura della muscolatura liscia, soprattutto quella uterina (è infatti importante nel parto) e la vasopressina (ormone antidiuretico o ADH, che agisce sui collettori del rene e viene rilasciata quando aumenta la concentrazione salina nel sangue): questi, attraverso gli assoni degli stessi neuroni, vengono trasportati alla neuroipofisi e lì accumulati fino a quando non si presenta uno stimolo adeguato; infatti questi neuroni sono sensibili ai cambiamenti di pressione osmotica del plasma per mezzo dei neuroni osmocettori (capaci di recepire i valori della pressione osmotica) che, in base alle variazioni di concentrazioni saline, si attivano stimolando la neuroipofisi.

Leggi anche:

Il sistema portale ipotalamo-ipofisario
Altri nove nuclei ipotalamici (anteriore, sopraottico, paraventricolare, periventricolare, arcuato, soprachiasmatico, premammillare, dorsomediale e ventromediale) presentano i neuroni parvocellulari, dai quali si dipartono i relativi assoni che vanno a terminare con bottoni sinaptici su capillari infundibolari, e permettono in tal modo il controllo della adenoipofisi (ipofisi anteriore). Questo meccanismo di tipo vascolare è detto sistema portale ipotalamo-ipofisario, e si attua tramite il rilascio da parte dell’ipotalamo dei cosiddetti fattori di rilascio (RH) (ad esempio il TRH per la tireotropina, il GnRH per la gonadotropina, il CRH per l’ormone adenocorticotropo, e il GHRH per il fattore della crescita), ma anche di fattori di inibizione (IF) che vengono riversati nei capillari. Intercettati dall’ipofisi, essi controllano la produzione e il rilascio dei corrispondenti ormoni ipofisari, i quali agiscono a loro volta sulla secrezione degli ormoni secreti dagli organi bersaglio. Il rilascio dei fattori RH o IF è controllata da uno tipo di regolazione a feedback negativo: infatti, una diminuzione della concentrazione ematica degli specifici ormoni secreti dagli organi bersaglio farà aumentare il rilascio dei fattori RH; al contrario, un loro aumento provocherà una diminuzione del rilascio degli stessi fattori. Questo tipo di regolazione è molto importante e il suo malfunzionamento crea squilibri anche gravi nell’organismo.

Leggi anche:

Ipotalamo e sistema nervoso parasimpatico
Per quanto concerne il controllo che l’ipotalamo attua sul sistema nervoso parasimpatico, esso avviene mediante l’attivazione di ulteriori nuclei, posti nella parte anteriore dell’ipotalamo, il nucleo anteriore e il nucleo preottico. Questi nuclei sono responsabili di fenomeni come la bradicardia (diminuzione della frequenza dei battiti cardiaci al di sotto dei 60 bpm), incremento di salivazione e sudorazione, ipotensione (abbassamento della pressione arteriosa), a seguito di un incremento dell’attività parasimpatica (vedi sistema nervoso parasimpatico). Viceversa, quando un individuo è improvvisamente allarmato o eccitato, le aree cerebrali superiori inviano segnali ai nuclei posteriori dell’ipotalamo, che stimolano il simpatico. Questo provoca tachicardia (accelerazione del battito cardiaco), tachipnea (aumento della frequenza respiratoria), midriasi (dilatazione delle pupille), aumento di flusso di sangue ai muscoli. Questo tipo di reazione si chiama “reazione di lotta o fuga” ed è un tipico esempio delle funzioni che possono essere svolte dall’ipotalamo. In particolare, aree diverse stimolano reazioni diverse. Un ulteriore esempio di quanto detto può essere riscontrato nell’azione svolta nella termoregolazione: infatti, i nuclei anteriore e preottico sono detti “centri del raffreddamento”; viceversa il nucleo posteriore è detto “centro del riscaldamento”. Le cellule di cui sono composti sono sensibili alla variazione di temperatura corporea, dato che ricavano dalla temperatura del sangue che arriva al cervello. Se la temperatura è al di sotto dei 36 °C, l’ipotalamo anteriore reagisce liberando serotonina, la quale attiva il nucleo posteriore che, stimolando il simpatico, crea un innalzamento della temperatura. Viceversa se la temperatura è elevata, il nucleo posteriore libera noradrenalina o dopamina, che stimolano i nuclei situati nella zona anteriore dell’ipotalamo, i quali agiscono aumentando la sudorazione e la vasodilatazione periferica. Questi meccanismi favoriscono la dispersione di calore e, quindi, l’abbassamento della temperatura corporea.

Leggi anche:

Altre funzioni dell’ipotalamo
Altri ruoli fondamentali svolti dall’ipotalamo sono la regolazione del sonno, ad opera del nucleo soprachiasmatico che ha in particolare la funzione di mantenere lo stato di veglia; il controllo dell’alimentazione ad opera dei nuclei ventromediale e ipotalamico laterale, che possono essere anche detti “centri della fame, della sazietà e della sete” data la loro funzione. Questa è resa possibile grazie agli impulsi derivanti da alcuni ormoni implicati nella regolazione del metabolismo (in particolare quello del glucosio, per cui gli ormoni più importanti che regolano questa attività sono insulina e leptine) ma anche dalle informazioni ricavate dagli enterocettori relative alla concentrazione di zuccheri e acqua nel sangue che, se troppo bassa, stimola il desiderio di mangiare e di bere. L’ipotalamo è anche in grado di controllare emozioni, stati d’animo e umore, nonché anche il comportamento sessuale. Questo è possibile grazie alla connessione anatomica dell’ipotalamo con il talamo e il sistema limbico (il quale è un insieme funzionale di zone del cervello che regola impulsi e comportamenti emotivi, ma è anche legato alle funzioni organiche vegetative. D’altra parte, sembra essere una delle parti più “antiche” dal punto di vista evoluzionistico); in questa accezione, si può affermare che l’ipotalamo funge da “connessione” tra i due sistemi suddetti e la relativa risposta corporea. Infatti, stimolazioni di diversi centri dell’ipotalamo, come già detto, danno luogo anche in questo caso a risposte diverse: la stimolazione del nucleo posteriore produce risposte aggressive, viceversa accade se vengono stimolati i centri laterali.

Leggi anche:

Dott. Emilio Alessio Loiacono
Medico Chirurgo

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Omero: anatomia dell’osso del braccio

MEDICINA ONLINE Dott Emilio Alessio Loiacono Medico Chirurgo Roma OMERO ANATOMIA OSSO BRACCIO SCHELETRO OS Riabilitazione Nutrizionista Infrarossi Accompagno Commissioni Cavitazione Radiofrequenza Ecografia Pulsata  Macchie Capillari Ano Pene.gifL’omero (pronuncia: òmero, per distinguerlo da Oméro, il poeta greco autore dell’Iliade e dell’Odissea) è un osso lungo, pari e simmetrico, che forma lo scheletro del braccio. L’omero è l’UNICO osso del braccio. Si articola superiormente con la scapola e (articolazione scapolo-omoerale) e inferiormente con le due ossa dell’avambraccio, radio e ulna (articolazione del gomito).

Da quali parti è composto l’omero?

  1. Epifisi prossimale. La testa dell’omero è costituita da una grossa superficie emisferica liscia e rivestita da cartilagine, diretta medialmente ed in rapporto con la cavità glenoidea della scapola; la testa è delimitata inferiormente dal collo anatomico dell’osso. Inferiormente al collo anatomico, nella parte frontale dell’osso, si trova un rilievo diretto in avanti noto come tubercolo minore (o trochine), inserzione del muscolo sottoscapolare; superiormente e lateralmente rispetto a quello minore si trova il tubercolo maggiore (trochite o trochitere), che con le sue tre facce dà inserzione agli altri muscoli della cuffia dei rotatori: il sopraspinato, il sottospinato e il piccolo rotondo. Tra i due tubercoli si trova il solco bicipitale (o intertubercolare), delimitato verso la diafisi da due creste che scendono dai rispettivi tubercoli (creste del tubercolo minore e maggiore); in questo solco scorre il tendine del capo lungo del bicipite brachiale. Medialmente e lateralmente al solco bicipitale si inseriscono rispettivamente il muscolo grande rotondo e grande pettorale.
  2. Diafisi. Il punto di passaggio convenzionale tra l’estremità prossimale e il corpo dell’omero è il collo chirurgico. La diafisi dell’omero è in sezione abbastanza circolare prossimalmente, mentre distalmente è triangolare. Ha quindi tre facce e tre margini. Il margine anteriore origina dal tubercolo minore, quello laterale dalla cresta epicondiloidea laterale e quello mediale dalla cresta epicondiloidea mediale. Sulla faccia antero-laterale, poco più in alto del centro, si trova la tuberosità deltoidea che rappresenta il punto di inserzione del muscolo deltoide. Al di sotto di questa si può intravedere invece il solco del nervo radiale, che dalla faccia posteriore si porta in quella antero-laterale. Sulla faccia anteromediale si trova invece il foro nutritizio dell’osso.
  3. Epifisi distale. L’estremità distale presenta una zona articolare e una zona non articolare: quella articolare è definita lateralmente dal condilo e medialmente dalla troclea dell’omero, che ha la forma di una puleggia. Il condilo si articola con la testa del radio, mentre la troclea con l’incisura trocleare o semilunare dell’olecrano dell’ulna. La porzione non articolare dell’estremità distale è data dall’epicondilo laterale (poco sviluppato) e dall’epicondilo mediale, o epitroclea (molto più sviluppato), al di sotto del quale si trova un solco che accoglie il nervo ulnare. Dai due epicondili si originano verso la diafisi la cresta sopracondiloidea mediale e la cresta sopracondiloidea laterale. Anteriormente, al di sopra del condilo, c’è la fossetta radiale che accoglie la testa del radio durante la flessione dell’avambraccio sul braccio, sopra la troclea c’è la fossetta coronoidea che accoglie il processo coronoideo dell’ulna sempre nella flessione dell’avambraccio sul braccio e posteriormente, al di sopra della troclea, è presente la fossa olecranica per accogliere l’olecrano dell’ulna nell’estensione dell’avambraccio.
  • Corpo. Il corpo ha una forma quasi cilindrica in alto e prismatica triangolare in basso. Presenta una faccia antero-mediale, una faccia antero-laterale e una faccia posteriore che sono divise da tre margini: anteriore, mediale e laterale.
  • Faccia antero-mediale. La faccia antero-mediale ha nella sua parte di mezzo il foro nutritizio al di sopra del quale è visibile un’impronta per l’inserzione del muscolo coracobrachiale; nella parte alta di questa faccia si trova il prolungamento inferiore del solco bicipitale.
  • Faccia antero-laterale. La faccia antero-laterale presenta, nel suo terzo medio, una parte rugosa, a forma di V, la tuberosità deltoidea, sulla quale si inserisce il muscolo deltoide.
  • Faccia posteriore. La faccia posteriore è percorsa dal solco del nervo radiale, una scanalatura elicoidale che ha inizio in alto presso il margine mediale e si porta in basso e in fuori, dividendo la faccia stessa in due parti, una al di sopra del solco, da cui origina il capo laterale del muscolo tricipite e una, sotto il solco, da cui nasce il capo mediale dello stesso muscolo.
  • Margine mediale. Il margine mediale percorre tutto il corpo dall’alto in basso terminando all’epitroclea.
  • Margine laterale. Il margine laterale, che è interrotto dal solco del nervo radiale, termina nell’epicondilo.
  • Margine anteriore. Il margine anteriore si biforca in basso delimitando la fossa coronoidea.
  • Estremità prossimale. L’estremità prossimale è ingrossata e fa seguito al corpo in corrispondenza del collo chirurgico. Presenta un’ampia superficie articolare quasi emisferica, rivestita di cartilagine, la testa dell’omero. La testa è delimitata, sul suo contorno, da un leggero restringimento, il collo anatomico, che la individua rispetto a due rilievi situati nelle sue vicinanze; questi sono la grande tuberosità e la piccola tuberosità.
  • Estremità distale. L’estremità distale è slargata e appiattita dall’avanti in dietro. Su ciascuno dei lati di questa estremità si trovano due rilievi rugosi; quello mediale è detto epitroclea e quello laterale è detto epicondilo. Sulla faccia anteriore dell’estremità distale si trova la fossa coronoidea nella quale, durante la flessione dell’avambraccio sul braccio, si pone il processo coronoideo dell’ulna. Sulla faccia posteriore della stessa estremità si trova la fossa olecranica che accoglie l’olecrano ulnare durante l’estensione dell’avambraccio.

I migliori prodotti per la cura delle ossa e dei dolori articolari 
Qui di seguito trovate una lista di prodotti di varie marche per il benessere di ossa, legamenti, cartilagini e tendini e la cura dei dolori articolari. Noi NON sponsorizziamo né siamo legati ad alcuna azienda produttrice: per ogni tipologia di prodotto, il nostro Staff seleziona solo il prodotto migliore, a prescindere dalla marca. Ogni prodotto viene inoltre periodicamente aggiornato ed è caratterizzato dal miglior rapporto qualità prezzo e dalla maggior efficacia possibile, oltre ad essere stato selezionato e testato ripetutamente dal nostro Staff di esperti:

Per approfondire:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Come viene sintetizzato il colesterolo nel nostro corpo? Le tappe della biosintesi

MEDICINA ONLINE Dott Emilio Alessio Loiacono Medico Chirurgo Roma COLESTEROLO TAPPE BIOSINTESI APPUNTI SCHEMA BIOCHIMICA  Riabilitazione Nutrizionista Infrarossi Accompagno Commissioni Cavitazione Radiofrequenza Ecografia Pulsata  Macchie.jpgCome abbiamo visto in questo precedente articolo che vi consiglio di leggere: Colesterolo: cos’è, a cosa serve, perché è pericoloso?, l’essere umano è capace di produrre autonomamente quasi tutto il colesterolo che gli serve cioè una quantità che oscilla tra 1 e 2 grammi al giorno negli adulti. Solo una piccola parte (in media 0,1 fino 0,3, massimo 0,5 grammi) viene assunta con l’alimentazione, il resto viene sintetizzato dal corpo stesso. In che modo? Tutte le cellule dell’organismo umano sono capaci di sintetizzare colesterolo a partire dall’acetilcoenzima A (una molecola importantissima in molte vie metaboliche dell’organismo), ma la maggior parte viene prodotto nel citosol delle cellule epatiche (cioè nel liquido delle cellule che compongono il fegato) che lo trasferiscono al sangue per il trasporto in tutto l’organismo. Le tappe biosintetiche seguono la via metabolica dell’acido mevalonico. Poiché non riesce a superare la barriera ematoencefalica, il cervello deve produrre da solo il colesterolo di cui necessita.

Le tappe principali della biosintesi del colesterolo in sintesi sono 4:

1) inizialmente si ha la conversione dell’acetil-CoA in mevalonato. Questa prima tappa è suddivisa in tre sotto-tappe:

  • nella prima si ha la condensazione di due molecole di acetil-CoA per formare acetoacetil-CoA (reazione catalizzata dalla β-chetotiolasi);
  • nella seconda sotto-tappa l’acetoacetil-CoA prodotto reagisce con un’altra molecola di acetil-CoA e si forma 3-idrossi-3-metilglutaril-CoA, abbreviato HMG-CoA (reazione catalizzata dalla HMG-CoA sintasi) per formare HMG-CoA;
  • nella terza sotto-tappa l’HMG-CoA viene ridotto, in presenza di NADPH, a mevalonato (enzima: HMG-CoA reduttasi). Le prime due tappe sono reversibili mentre la terza è una tappa obbligata che determina la velocità della reazione.

2) Nella seconda tappa si ha la formazione di unità isopreniche attivate. Per prima cosa tre gruppi fosfato vengono aggiunti al mevalonato per trasferimento dall’ATP (che viene quindi idrolizzato ad ADP). Successivamente il gruppo ossidrilico sul carbonio-3 viene rimosso, insieme al gruppo carbossilico vicino, e si forma in questo modo la prima unità isoprenica attivata, il Δ3-isopentenil pirofosfato. Per isomerizzazione di quest’ultima sostanza, si forma un ulteriore unità isoprenica attivata il dimetilallil pirofosfato.

3) Nella terza tappa (in tre sotto-tappe) si forma lo squalene per condensazioni “testa-coda” (prime due sotto-tappe) o “testa-testa” (terza sotto-tappa) tra le unità isopreniche attivate formatesi nelle reazioni precedenti.

4) nella quarta tappa lo squalene viene convertito in colesterolo in una serie di reazioni. Durante queste reazioni la molecola dello squalene, lineare, viene ciclizzata, convertendolo (negli animali) in lanosterolo. Il lanosterolo viene poi convertito (in 19 tappe) in colesterolo, tramite spostamento o rimozione di gruppi metili.

Leggi anche:

 

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!