Polmoni: anatomia e funzioni in sintesi

medicina-online-dott-emilio-alessio-loiacono-medico-chirurgo-roma-differenza-ventilazione-polmonare-alveolare-riabilitazione-nutrizionista-infrarossi-accompagno-commissioni-cavitazione-radiofrequenzaI polmoni destro e sinistro si trovano nella cavità toracica ai lati del mediastino. Ciascuno di essi è avvolto da una membrana sierosa a doppia parete, la pleura, che costituisce i sacchi pleurici, completamente chiusi. Nel sottile spazio tra i due foglietti pleurici di ciascun sacco vi è una pressione negativa che permette al polmone di espandersi nell’inspirazione e ricevere l’aria atmosferica. Il polmone destro è più voluminoso del sinistro La superficie esterna dei polmoni è percorsa da profonde scissure interlobari, che dividono il polmone destro in tre lobi e quello sinistro in due.  L’ambiente del polmone è molto umido e quindi facilmente attaccabile da batteri. Molte malattie respiratorie sono proprio dovute ad un’infezione virale o batterica.

Leggi anche: Apparato respiratorio: anatomia in sintesi, struttura e funzioni

Funzioni dei polmoni

La principale (ma non esclusiva) funzione dei polmoni è quella di trasportare l’ossigeno atmosferico ai fluidi corporei come sangue o emolinfa, e di espellere anidride carbonica da essi all’atmosfera. Questo scambio di gas è compiuto in un mosaico di cellule specializzate che formano delle piccole sacche d’aria chiamate alveoli. Il 70% della respirazione è guidata dal diaframma il quale si trova in fondo al torace. La contrazione del diaframma espande verticalmente la cavità dove il polmone è semichiuso. Il rilassamento del muscolo ha l’effetto opposto. L’aria entra attraverso le cavità nasali o orali; essa passa attraverso la laringe e successivamente per la trachea, arrivando ai bronchi. I bronchi dividono i polmoni in parti sempre più piccole, chiamati bronchioli. I polmoni terminano con le sacche alveolari. Gli alveoli sono piccole sacche a contatto con il sangue capillare. Qui l’ossigeno viene diffuso nel sangue, trasportato dall’emoglobina fino al cuore attraverso le vene polmonari. Il sangue senza ossigeno dal cuore parte arrivando attraverso l’arteria polmonare fino ai polmoni per avviare il processo di ossigenazione.

Leggi anche: A che serve l’osso ioide e dove si trova? Cos’è il pomo d’Adamo?

Funzioni non respiratorie dei polmoni

Oltre alle funzioni di respirazione come lo scambio di gas e la regolazione dell’idrogeno, i polmoni:

  • insieme al rene e ai tamponi ematici, sono i principali regolatori dell’equilibrio acido-base;
  • secernono sostanze quali l’ACE, fattore necessario per la conversione dell’angiotensina I (blando vaso costrittore) in angiotensina II, potentissimo vaso costrittore;
  • influenzano la concentrazione di sostanze attive e di farmaci nel sangue arterioso;
  • filtrano i piccoli grumi di sangue che si formano nelle vene;
  • fungono da protezione fisica per il cuore.

Leggi anche: Differenza tra inspirazione e espirazione: l’atto respiratorio

Organizzazione strutturale

All’ingresso nei polmoni, i bronchi principali si ramificano dando origine all’albero bronchiale. Il bronco principale destro dà origine a tre bronchi lobari, che si portano ai tre lobi del P. destro, il sinistro ne forma invece due. Il parenchima polmonare è formato dall’insieme dei lobuli polmonari. Ogni lobulo ha forma poliedrica e riceve un bronco lobulare accompagnato da un ramo dell’arteria polmonare. Il bronco lobulare emette una serie di ulteriori ramificazioni, i bronchi intralobulari che, ramificandosi ulteriormente, danno origine a 10-15 rami più piccoli, i bronchioli terminali. Ciascun bronchiolo terminale si biforca in due bronchioli respiratori la cui parete presenta, a intervalli, estroflessioni sacciformi che vengono circondate da una rete di capillari originati dai rami dell’arteria polmonare. Sono gli alveoli polmonari, sede degli scambi gassosi e strettamente contigui gli uni agli altri. L’unità elementare del parenchima polmonare è rappresentata dall’acino polmonare, definito come l’insieme delle ramificazioni, provviste di alveoli polmonari, che originano da un bronchiolo terminale. In ogni acino sono presenti da 500 a 2.000 alveoli polmonari.

Leggi anche:

Dott. Emilio Alessio Loiacono
Medico Chirurgo
Direttore dello Staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o unisciti al nostro gruppo Facebook o ancora seguici su Twitter, su Instagram, su YouTube, su LinkedIn, su Tumblr e su Pinterest, grazie!

Ipotalamo: anatomia, funzioni ed ormoni prodotti in sintesi

MEDICINA ONLINE IPOTALAMO IPOFISI ADENOIPOFISI NEUROIPOFISI ORMONI STIMOLANTE RH HORMONE ANATOMIA FUNZIONI FISIOLOGIA SCHEMI ASSE IPOTALAMO-IPOFISARIO CERVELLO ENDOCRINOLOGIA CERVELLO GHIANDOLE METABOLISMO TSH TRH TIROIDEL’ipotalamo è una struttura del sistema nervoso centrale situata nella zona centrale interna ai due emisferi cerebrali. Costituisce la parte ventrale del diencefalo e comprende numerosi nuclei che attivano, controllano e integrano i meccanismi autonomici periferici, l’attività endocrina e molte funzioni somatiche quali la termoregolazione, il sonno, il bilancio idro-salino e l’assunzione del cibo. L’ipotalamo controlla molte attività connesse all’omeostasi e controlla anche l’ipofisi.

Anatomia

L’ipotalamo è situato ai lati del terzo ventricolo cerebrale e si continua col suo pavimento, è delimitato posteriormente dai corpi mammillari, anteriormente dal chiasma ottico, superiormente dal solco ipotalamico e inferiormente dall’ipofisi, con la quale è a stretto contatto non solo anatomicamente ma anche funzionalmente.

Nel suo contesto, in senso antero-posteriore si possono riconoscere tre gruppi nucleari principali:

  • gruppo anteriore: comprende i nuclei sopraottico e paraventricolare
  • gruppo intermedio: in esso, prendendo come riferimento un piano sagittale passante per la colonna del fornice, possiamo distinguere una regione mediale (con i nuclei: ventromediale, dorsomediale, perifornicale e arcuato, il quale si estende nell’eminenza mediana) e una regione laterale (nuclei: ipotalamico laterale e tuberali laterali)
  • gruppo posteriore: comprende i corpi mamillari nei quali si distinguono i nuclei mamillari mediale, laterale e intermedio, e i nuclei ipotalamici posteriori.

La superficie inferiore dell’ipotalamo si espande leggermente verso il basso formando il tuber cinereum, dal cui centro sporge l’infundibolo, riccamente vascolarizzato, che a sua volta si prolunga nell’ipofisi.

Il rapporto tra ipotalamo e ipofisi è detto asse ipotalamo-ipofisario e collega il sistema nervoso al sistema endocrino o, per meglio dire, permette al primo di svolgere azioni di regolazione sul secondo.

Leggi anche:

Struttura e funzioni

L’ipotalamo è costituito da cellule di sostanza grigia raggruppate in numerosi nuclei, distinti topograficamente nei tre gruppi sopra descritti (anteriore, intermedio e posteriore), e collegati con la corteccia cerebrale e i centri del telencefalo, con il talamo e l’epitalamo, con il mesencefalo e il bulbo, da cui arrivano o ai quali vanno impulsi sensoriali vari e fibre nervose efferenti.

L’ipotalamo svolge pertanto una duplice funzione:

  • una funzione di controllo del sistema nervoso autonomo (attraverso il quale modifica la motilità viscerale, i riflessi, il ritmo sonno-veglia, il bilancio idrosalino, il mantenimento della temperatura corporea, l’appetito e l’espressione degli stati emotivi);
  • una funzione di controllo del sistema endocrino: due dei nuclei ipotalamici (sopraottico e paraventricolare) collegano direttamente l’ipotalamo all’ipofisi tramite neuroni che, partendo da essi e terminando con i loro assoni nei capillari della neuroipofisi (porzione posteriore dell’ipofisi, minore per dimensioni), formano un fascio ipotalamo-neuroipofisario che unisce i due organi e forma così il suddetto asse ipotalamo-ipofisario.

I neuroni presenti nei due nuclei producono due ormoni:

  • ossitocina: stimola la contrattura della muscolatura liscia, soprattutto quella uterina (è infatti importante nel parto);
  • vasopressina (od ormone antidiuretico o ADH): agisce sui collettori del rene e viene rilasciata quando aumenta la concentrazione salina nel sangue): questi, attraverso gli assoni degli stessi neuroni, vengono trasportati alla neuroipofisi e lì accumulati fino a quando non si presenta uno stimolo adeguato; infatti questi neuroni sono sensibili ai cambiamenti di pressione osmotica del plasma per mezzo dei neuroni osmocettori (capaci di recepire i valori della pressione osmotica) che, in base alle variazioni di concentrazioni saline, si attivano stimolando la neuroipofisi.

Gli altri nove nuclei ipotalamici:

  • anteriore,
  • sopraottico,
  • paraventricolare,
  • periventricolare,
  • arcuato,
  • soprachiasmatico,
  • premammillare,
  • dorsomediale,
  • ventromediale

presentano dei neuroni detti parvocellulari, dai quali si dipartono i relativi assoni che vanno a terminare con bottoni sinaptici su capillari infundibolari, e permettono in tal modo il controllo della adenoipofisi (ipofisi anteriore). Questo meccanismo di tipo vascolare è detto sistema portale ipotalamo-ipofisario, e si attua tramite il rilascio da parte dell’ipotalamo dei cosiddetti fattori di rilascio (RH) come:

  • TRH per la tireotropina,
  • GnRH per la gonadotropina,
  • CRH per l’ormone adenocorticotropo,
  • GHRH per il fattore della crescita,

ma anche di fattori di inibizione (IF) che vengono riversati nei capillari. Intercettati dall’ipofisi, essi controllano la produzione e il rilascio dei corrispondenti ormoni ipofisari, i quali agiscono a loro volta sulla secrezione degli ormoni secreti dagli organi bersaglio.

Il rilascio dei fattori RH o IF è controllata da uno tipo di regolazione a feedback negativo: infatti, una diminuzione della concentrazione ematica degli specifici ormoni secreti dagli organi bersaglio farà aumentare il rilascio dei fattori RH; al contrario, un loro aumento provocherà una diminuzione del rilascio degli stessi fattori. Questo tipo di regolazione è molto importante e il suo malfunzionamento crea squilibri anche gravi nell’organismo.

Per quanto concerne il controllo che l’ipotalamo attua sul sistema nervoso parasimpatico, esso avviene mediante l’attivazione di ulteriori nuclei, posti nella parte anteriore dell’ipotalamo, il nucleo anteriore e il nucleo preottico. Questi nuclei sono responsabili di fenomeni come la bradicardia(diminuzione della frequenza dei battiti cardiaci al di sotto dei 60 bpm), incremento di salivazione e sudorazione, ipotensione (abbassamento della pressione arteriosa), a seguito di un incremento dell’attività parasimpatica (vedi sistema nervoso parasimpatico). Viceversa, quando un individuo è improvvisamente allarmato o eccitato, le aree cerebrali superiori inviano segnali ai nuclei posteriori dell’ipotalamo, che stimolano il simpatico. Questo provoca tachicardia (accelerazione del battito cardiaco), tachipnea (aumento della frequenza respiratoria), midriasi (dilatazione delle pupille), aumento di flusso di sangue ai muscoli. Questo tipo di reazione si chiama “reazione di lotta o fuga” ed è un tipico esempio delle funzioni che possono essere svolte dall’ipotalamo. In particolare, aree diverse stimolano reazioni diverse.

Leggi anche:

Un ulteriore esempio di quanto detto può essere riscontrato nell’azione svolta nella termoregolazione: infatti, i nuclei anteriore e preottico sono detti “centri del raffreddamento”; viceversa il nucleo posteriore è detto “centro del riscaldamento”. Le cellule di cui sono composti sono sensibili alla variazione di temperatura corporea, dato che ricavano dalla temperatura del sangue che arriva al cervello. Se la temperatura è al di sotto dei 36 °C, l’ipotalamo anteriore reagisce liberando serotonina, la quale attiva il nucleo posteriore che, stimolando il simpatico, crea un innalzamento della temperatura. Viceversa se la temperatura è elevata, il nucleo posteriore libera noradrenalina o dopamina, che stimolano i nuclei situati nella zona anteriore dell’ipotalamo, i quali agiscono aumentando la sudorazione e la vasodilatazione periferica. Questi meccanismi favoriscono la dispersione di calore e, quindi, l’abbassamento della temperatura corporea.

Altri ruoli fondamentali svolti dall’ipotalamo sono la regolazione del sonno, ad opera del nucleo soprachiasmatico che ha in particolare la funzione di mantenere lo stato di veglia; il controllo dell’alimentazione ad opera dei nuclei ventromediale e ipotalamico laterale, che possono essere anche detti “centri della fame, della sazietà e della sete” data la loro funzione. Questa è resa possibile grazie agli impulsi derivanti da alcuni ormoni implicati nella regolazione del metabolismo (in particolare quello del glucosio, per cui gli ormoni più importanti che regolano questa attività sono insulina e leptine) ma anche dalle informazioni ricavate dagli enterocettori relative alla concentrazione di zuccheri e acqua nel sangue che, se troppo bassa, stimola il desiderio di mangiare e di bere.

L’ipotalamo è anche in grado di controllare emozioni, stati d’animo e umore, nonché anche il comportamento sessuale. Questo è possibile grazie alla connessione anatomica dell’ipotalamo con il talamo e il sistema limbico (il quale è un insieme funzionale di zone del cervello che regola impulsi e comportamenti emotivi, ma è anche legato alle funzioni organiche vegetative. D’altra parte, sembra essere una delle parti più “antiche” dal punto di vista evoluzionistico); in questa accezione, si può affermare che l’ipotalamo funge da “connessione” tra i due sistemi suddetti e la relativa risposta corporea. Infatti, stimolazioni di diversi centri dell’ipotalamo, come già detto, danno luogo anche in questo caso a risposte diverse: la stimolazione del nucleo posteriore produce risposte aggressive, viceversa accade se vengono stimolati i centri laterali.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Barriera ematoencefalica: dove si trova, funzioni, quali sostanze la attraversano

Dott. Loiacono Emilio Alessio Medico Chirurgo Medicina Chirurgia Estetica Benessere Dietologia Sessuologia Ecografie Tabagismo Smettere di fumare Mangiare meno ringiovanisce il tuo cervello2
La BBE, acronimo di “barriera emato-encefalica” (in inglese “blood-brain barrier”) è struttura anatomica composta dalle cellule endoteliali che compongono i vasi del sistema nervoso centrale.

Funzioni della barriera emato-encefalica
La BBE ha principalmente una funzione di protezione del tessuto cerebrale dagli elementi nocivi (per esempio chimici) presenti nel sangue, pur tuttavia permettendo il passaggio di sostanze necessarie alle funzioni metaboliche.

Da cosa è composta la barriera emato-encefalica?
La BBE è composta da cellule endoteliali che danno origine ad un endotelio continuo e non fenestrato, ossia senza spazi tra una cellula endoteliale e l’altra. Le cellule endoteliali sono poi unite tra di loro da giunzioni cellulari occludenti (altrimenti dette tight junction): questa maggiore compattezza impedisce il passaggio di sostanze idrofile o con grande peso molecolare dal flusso sanguigno all’interstizio (e quindi ai neuroni) con una capacità di filtraggio molto più selettiva rispetto a quella effettuata dalle cellule endoteliali dei capillari di altre parti del corpo. Un ulteriore fattore che contribuisce alla formazione è costituito dalle proiezioni delle cellule astrocitarie, chiamati peduncoli astrocitari (conosciuti anche come “limitanti gliali”), che circondano le cellule endoteliali della BEE, determinando un’ulteriore “barriera”.

Quali sostanze riescono ad attraversare la barriera emato-encefalica?
Le sostanze che riescono a passare la BBE devono presentare caratteristiche specifiche come:

  • PM basso (più le molecole sono piccole, più riescono a passare);
  • Alta lipofilia;
  • Legame alle proteine plasmatiche;
  • Il farmaco dev’essere in forma libera;
  • Stereospecificità (perché il trasporto è mediato da carriers).

Le sostanze tossiche non riescono generalmente ad attraversare la BBE, ma non tutte vengono bloccate: è il caso delle sostanze da abuso, che presentano un’elevata lipofilia e come tali riescono ad attraversare senza problemi la BBE.

Altre “barriere”
A livello sistema nervoso centrale ci sono due tipi di barriere. La prima è la BEE, oggetto di questo articolo, che come abbiamo visto impedisce alle sostanze presenti nel sangue arterioso di passare nel liquido extracellulare cerebrale, quindi di raggiungere il tessuto nervoso. La seconda è la barriera emato-liquorale, che impedisce il passaggio delle sostanze dai capillari cerebrali di tipo arterioso al liquor cerebrospinale. Questi due tipi di barriere hanno diversa permeabilità ed è molto più facile oltrepassare la barriera emato-liquorale rispetto alla barriera emato-encefalica. Una data sostanza può passare direttamente attraverso la BEE solo se presenta caratteristiche specifiche, essendo la BEE molto selettiva lascia infatti passare solamente sostanze o metaboliti indispensabili, bloccando di riflesso tutte le altre sostanze.
Esiste anche un altro tipo di barriera: la barriera emato-retinica (composta dai capillari non fenestrati della circolazione retinica e dalle giunzioni occludenti tra le cellule retiniche epiteliali) che impedisce invece il passaggio di grandi molecole dai vasi coriocapillari nella retina.

Per approfondire, leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Di cosa è composto il sangue e quali sono le sue funzioni?

MEDICINA ONLINE GLICEMIA INSULINA SANGUE DIFFERENZA CONCENTRAZIONE ORMONE PIASTRINE GLOBULI ROSSI BIANCHI GLUCAGONE TESTOSTERONE ESTROGENI PROGESTERONE CUOREIl sangue è un tessuto biologicamente attivo, composto da cellule (globuli rossi, globuli bianche e piastrine) sospese nel plasma, un liquido nel quale sono presenti proteine, zuccheri, grassi e sali minerali. Per capire quanto sia importante, basta pensare al fatto che rappresenta circa l’8 percento del peso corporeo (nei maschi il volume medio è di 5-6 litri) e che perdite di sangue (emorragie) del 15-30% provocano pallore e stanchezza, mentre perdite superiori al 35% possono causare la morte in brevissimo tempo.

Quali sono le funzioni del sangue?
• trasporto di sostanze in tutti i distretti del corpo (eccetto epidermide e suoi derivati: peli, capelli, unghie, smalto dei denti e cornea privi di vasi sanguigni);
• difesa da tutto ciò che entra nel nostro corpo e non viene riconosciuto come proprio ed è quindi estraneo compresi i microrganismi patogeni – virus, batteri, funghi;
• riparazione di danni e ferite a carico dei vasi sanguigni attraverso la coagulazione del sangue per evitare emorragie;
• distribuzione del calore generato soprattutto dalla contrazione muscolare attraverso il controllo della circolazione periferica: se abbiamo caldo diventiamo rossi perché avviene una vasodilatazione, se abbiamo freddo avviene una vasocostrizione.

Leggi anche:

Di cosa si compone?
Il plasma è la parte fluida di colore giallo e rappresenta il volume maggiore (55%) del sangue. Il plasma è un liquido di color giallo chiaro costituito per il 90% da acqua, per il 10% da sostanze organiche e sali disciolti. Ha un peso specifico inferiore a quello del sangue. La proteina maggiormente rappresentata (60% del totale) è l’albumina: essa mantiene la pressione oncotica costante. Numerose le globuline (35% del totale), di cui fanno parte, tra le altre, le globuline β con funzioni di trasporto ionico, di ormoni e di lipidi, e le immunoglobuline (o anticorpi), che contribuiscono alla difesa immunitaria. Un’altra nota proteina è il fibrinogeno (5% del totale), la forma inattiva della fibrina, fondamentale per la costituzione dei coaguli. Vi sono inoltre altri fattori della coagulazione: la protrombina, le proteine del sistema del complemento. Il plasma contiene anche glucidi, principalmente sotto forma di glucosio, nonché lipidi quali i trigliceridi e i fosfolipidi, quindi numerosi ioni, magnesio, sodio, potassio, cloruro, calcio, acido urico, urea, e altri cataboliti.

Siero
Il siero è semplicemente plasma privo di fibrinogeno, fattore VIII, fattore V e protrombina. Il fibrinogeno è una proteina solubile che nel processo di coagulazione del sangue viene convertita in fibrina, proteina non globulare ma filamentosa. Per ottenere un plasma senza fibrinogeno (quindi per ottenere il siero), in seguito al prelievo del sangue, si attende la coagulazione. In seguito, per centrifugazione del campione biologico, si separa la fase liquida del sangue dalla parte corpuscolare e si ottiene dunque il siero.

Percentuali
Il 55-60% del sangue è costituito dal plasma, mentre gli elementi figurati ne costituiscono il 40-45%. La percentuale di globuli bianchi e piastrine è pari all’1%, quella dei globuli rossi è del 44%.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Vagina: anatomia, funzioni e patologie in sintesi

MEDICINA ONLINE VAGINA VULVA APPARATO GENITALE FEMMINILE SCHEMA ANATOMIA UTERO TUBE FALLOPPIO OVAIO.jpg

La vagina (dal latino, letteralmente “fodero” o “guaina”) è una delle parti interne dell’apparato genitale femminile ed è costituita da un canale fibromuscolare molto elastico che serve da supporto al collo dell’utero e all’uretra. Si tratta dell’organo femminile interessato nel rapporto sessuale e, come canale ultimo, nel parto. La vagina unisce l’utero con la vulva (i genitali esterni). La vagina ha una lunghezza di 8-10 centimetri e un orientamento leggermente obliquo, che dall’alto si dirige in basso e in avanti. Superiormente si inserisce nel collo dell’utero, mentre inferiormente attraversa il pavimento pelvico e si apre nel vestibolo della vulva. Anteriormente, la vagina è in rapporto con la base della vescica nel suo terzo superiore e con l’uretra nella sua parte inferiore. Posteriormente, la vagina è in rapporto con la cavità peritoneale (cavo del Douglas) nel suo terzo superiore, con il retto nella sua porzione intermedia e con il perineo nel terzo inferiore.

Funzioni della vagina

Il canale vaginale è molto distensibile; in condizioni normali è infatti collassato (appiattito in senso antero-posteriore), mentre si dilata:

  • durante i rapporti sessuali, per accogliere il pene e ricevere lo sperma (organo copulatorio);
  • durante il parto, per consentire il passaggio del feto e degli annessi fetali.

Altra funzione della vagina è quella di permettere il passaggio dei fluidi mestruali.

Leggi anche: Apparato genitale femminile: anatomia, funzioni e patologie in sintesi

Anatomia

La vagina è un canale che si estende dalla cervice uterina (porzione anatomica più profonda) alla vulva (porzione anatomica superficiale), la quale ha una lunghezza da 6 a 8 cm nella parte anteriore e di 8–9 cm nella parte posteriore, dilatandosi/espandendosi in lunghezza e larghezza durante l’eccitazione sessuale. Quando la donna mantiene la stazione eretta, il condotto vaginale traccia (rispetto alla regione pelvica) una curva geometrica di orientamento superiore-posteriore che forma un angolo leggermente minore di 45 gradi con l’utero. L’apertura vaginale si trova verso l’estremità caudale della vulva, dietro l’apertura dell’uretra. Il quarto superiore della vagina è separato dal retto per mezzo del cavo rettouterino. Sopra la vagina è situato il monte di Venere. La vagina è di colore rosa vivo tendente al rosso, particolare comune alle membrane mucose interne (in condizione fisiologica) della maggior parte dei mammiferi. I solchi prodotti dalla ripiegatura della parete nel terzo esterno della vagina sono detti pieghe vaginali. Si tratta di rughe costituite da tessuto epiteliale che hanno lo scopo di offrire alla vagina un’estesa area superficiale che ne favorisce l’estensione e l’allungamento. La dilatazione è agevolata, oltre che da dette pieghe che ne aumentano l’espandibilità, pure dalla particolare lubrificazione, che avviene tramite le ghiandole di Bartolino. La membrana della parete vaginale mantiene una determinata umidità, anche se non contiene alcuna ghiandola. Prima e durante l’ovulazione, vengono prodotte diverse varianti di muco della cervice, che fornisce un ambiente favorevole alcalino nel canale vaginale per massimizzare le possibilità di sopravvivenza per gli spermatozoi. La vagina, nella donna vergine, è (di norma, ma non immancabilmente) coperta in parte dall’imene: una membrana di tessuto connettivo che può essere infranta oltre che da un rapporto sessuale, anche da alcuni tipi di esercizi, come le passeggiate a cavallo o la ginnastica, ed altresì da un esame pelvico incauto. Per converso, non necessariamente il coito determina una lacerazione dell’imene: ne consegue che la deflorazione non è un criterio affidabile per la determinazione del primo rapporto completo (specie nell’ipotesi di cosiddetto imene compiacente).

Imene

Nelle donne vergini l’orifizio vaginale è circondato in maniera più o meno importante dall’imene; si tratta di una membrana di tessuto connettivo simile ad un anello, che varia sensibilmente da una donna all’altra per dimensioni e spessore (in alcune donne arriva ad esempio a chiudere completamente l’apertura vaginale, vedi imene imperforato). La rottura dell’imene (detta deflorazione) avviene generalmente durante il primo rapporto sessuale, ma può prodursi anche facendo sport (come l’equitazione) o a seguito di traumi locali, anche durante la masturbazione.

Leggi anche: Visita ginecologica: come avviene, mestruazioni, preparazione, quando si fa

Lubrificazione e rapporti sessuali

La mucosa vaginale è rivestita da un epitelio pavimentoso stratificato non cheratinizzato; tale epitelio è tipico delle regioni che devono sopportare un importante stress meccanico e che per questo sono soggette a un rapido turnover degli elementi cellulari di superficie. Oltre che nella vagina, ad esempio, ritroviamo questo epitelio nella mucosa del cavo orale e dell’esofago. Nella mucosa vaginale non sono presenti ghiandole; di conseguenza, la lubrificazione del canale vaginale è affidata al fluido che trasuda dai plessi venosi della parete vaginale; durante i rapporti sessuali, la lubrificazione è maggiore poiché i vasi venosi si dilatano in risposta all’eccitazione sessuale. A ciò si aggiunge anche l’attività lubrificante del muco cervicale, mentre per quanto riguarda la lubrificazione della vulva intervengono soprattutto le ghiandole di Bartolini. Il fluido vaginale rappresenta anche un importante difesa dai patogeni e un sostegno per l’attività degli spermatozoi.

Leggi anche: La vagina è uguale in tutte le donne?

Rughe vaginali

La mucosa della vagina presenta pieghe trasversali, disposte in serie e chiamate rughe o pieghe vaginali, più numerose e sviluppate inferiormente. La loro presenza è importante per garantire all’organo la già ricordata estensibilità, che gli permette ad esempio di adattarsi alla misura del pene durante un rapporto sessuale. In seguito alla semplice eccitazione sessuale, anche senza penetrazione, la vagina si allunga rapidamente di circa 8cm e si espande anche in larghezza. Come l’utero, anche la mucosa vaginale subisce caratteristiche e cicliche modificazioni in risposta ai livelli di estrogeni e progesterone.

Il pH vaginale

In condizioni normali, la vagina è popolata da diversi microrganismi, che tra loro si trovano in una condizione di equilibrio. I batteri più importanti nell’ecosistema vaginale sono i lattobacilli. Come avviene in altri distretti, sia i lattobacilli che l’organismo traggono vantaggi da questa reciproca convivenza. La flora lattobacillare si nutre infatti del glicogeno presente nelle trasudazioni vaginali e ricambia il favore sintetizzando acido lattico. Ed è proprio grazie all’acido lattico che l’ambiente vaginale viene mantenuto leggermente acido, ad un pH di circa 3,8-4,5. Tale acidità è particolarmente preziosa e importante per l’organismo, poiché ostacola la crescita di altri patogeni responsabili di infezioni vaginali.

Leggi anche: Quanto è profonda una vagina?

Patologie della vagina

Le principali malattie e i più comuni disturbi che interessano la vagina sono:

  • vaginite: infiammazione delle pareti vaginali, spesso legata a processi infettivi dell’utero a trasmissione sessuale o per contaminazione fecale;
  • vaginosi batterica: infiammazione della vagina ad eziologia polimicrobica; significa che a determinarne l’infiammazione concorre una generale alterazione della normale flora microbica;
  • vaginismo: spasmo involontario dei muscoli vaginali e perivaginali nel momento della penetrazione del pene o del tentativo – reale o immaginario – di penetrazione. Il vaginismo rende dolorosi, se non addirittura impossibili, i rapporti sessuali;
    prolasso vaginale: spostamento verso il basso delle pareti vaginali per cedimento delle strutture di sostegno e sospensione della vagina.

Leggi anche:

Dott. Emilio Alessio Loiacono
Medico Chirurgo
Direttore dello Staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o unisciti al nostro gruppo Facebook o ancora seguici su Twitter, su Instagram, su Mastodon, su YouTube, su LinkedIn, su Tumblr e su Pinterest, grazie!

Apparato urinario: anatomia e fisiologia [SCHEMA]

MEDICINA ONLINE Dott Emilio Alessio Loiacono Medico Chirurgo Roma APPARATO URINARIO ANATOMIA FISIOLOGIA SCHEMA Riabilitazione Nutrizionista Infrarossi Accompagno Commissioni Cavitazione Radiofrequenza Ecografia Pulsat Macchie Capillari  Pene.jpgCom’è fatto e come funziona l’apparato unitario? Il funzionamento e le strutture principali macroscopiche e microscopiche dell’apparato urinario vi appariranno subito chiari, grazie a questo pratico schema stampabile ad alta risoluzione.

Consiglio di salvare l’immagine e, usando uno schermo di dimensioni adeguate, zoomare sulle singole parti per poter leggere il testo scritto.

Per approfondire:

Dott. Emilio Alessio Loiacono
Medico Chirurgo
Direttore dello Staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o unisciti al nostro gruppo Facebook o ancora seguici su Twitter, su Instagram, su YouTube, su LinkedIn, su Tumblr e su Pinterest, grazie!

Rene: anatomia, funzioni e patologie in sintesi

MEDICINA ONLINE RENE RENI ANATOMIA FUNZIONI PATOLOGIE SINTESI SANGUE FILTRO.jpgI reni sono due organi di colore rosso scuro che, insieme alle vie urinarie, costituiscono l’apparato urinario, che filtra dal sangue i prodotti di scarto del metabolismo e li espelle tramite l’urina. I reni inoltre gestiscono l’equilibrio idro-salino nel corpo umano. I reni si trovano ai lati della colonna vertebrale e sono tenuti in sede dalla pressione addominale e da uno spesso tessuto connettivo detto fascia renale. Seppur mantengano la loro posizione, si abbassano e si alzano a seconda delle fasi del respiro. Organi escretori per antonomasia, filtrano ogni minuto 1200 ml di sangue ovvero 1700 litri in un giorno. Entrambi i reni hanno una superficie liscia, una faccia anteriore convessa e una posteriore piana e un po’ incurvata, un polo superiore arrotondato e uno inferiore più appuntito, un margine laterale convesso e uno mediale incavato.

Leggi anche:

Funzioni dei reni

I reni non hanno solo il compito, tramite i nefroni, di eliminare i prodotti di scarto del catabolismo azotato e i prodotti tossici che vi giungono, ma anche quello di regolare il volume del liquido extracellulare e quindi il contenuto idrico dell’organismo e poi di regolare il pH ematico tramite riassorbimento ed eliminazione di bicarbonato HCO3-; hanno anche importanti funzioni endocrine, secernendo diversi ormoni ad azione sistemica (quali renina ed eritropoietina) ed attivando il calcitriolo. Il rene è principalmente un organo escretore, ma svolge anche altre funzioni:

  • regola l’equilibrio idrico ed elettrolitico nei liquidi corporei regolando la concentrazione di Na+, K+, Cl-, HCO3-, PO43-, Ca2+, glucosio, aminoacidi, acido urico, urea, mediante integrazione tra processi di filtrazione, riassorbimento, secrezione ed escrezione a livello del nefrone;
  • partecipa al mantenimento dell’equilibrio acido base (controllo del pH ematico) agendo sul riassorbimento di HCO3- e sulla secrezione di H+;
  • partecipa alla regolazione del volume dei liquidi corporei – e quindi della pressione sanguigna – mediante meccanismi che permettono il recupero e l’eliminazione di acqua (clearance dell’acqua libera) con conseguente escrezione di un’urina che, a seconda delle esigenze dell’equilibrio idrico ed elettrolitico, può essere ipertonica, isotonica o ipotonica (cioè avente una concentrazione di soluti maggiore, uguale o minore rispetto a quella del sangue);
  • svolge importanti funzioni endocrine mediante la secrezione di renina, eritropoietina, prostaglandine e la sintesi, a partire dalla vitamina D, di 1,25-diidrossicolecalciferolo, necessario per la regolazione ed il trasporto del calcio. La renina svolge un importante ruolo nel controllo della pressione sanguigna agendo nel Sistema renina-angiotensina-aldosterone, l’eritropoietina è un ormone indispensabile per la formazione e la maturazione dei globuli rossi nel processo detto eritropoiesi, mentre gli effetti fisiologici delle prostaglandine sono molti e svariati e si esercitano a diversi livelli;
  • partecipa al metabolismo dei carboidrati poiché è una sede della gluconeogenesi.

Leggi anche:

Anatomia

I reni sono due organi retroperitoneali simili a due grossi fagioli di colore bruno-rossastro, posti subito a lato della colonna vertebrale tra T12 e L3. Ogni rene da un polo all’altro misura circa 13 cm di lunghezza, 8 cm di larghezza e 3 cm antero-posteriormente, con il rene sinistro tendenzialmente più lungo del destro di 1-1,5 cm, anche se i due reni possono risultare di dimensioni molto simili. Il loro peso è variabile, mediamente circa 150 g negli uomini e 135 g nelle donne. Normalmente non sono palpabili. Il rene destro è posto leggermente più in basso del sinistro a causa dell’ingombro del fegato nell’ipocondrio destro, ed è leggermente più corto e tozzo, il sinistro più allungato e leggermente più piatto. L’asse longitudinale di un rene è infero-laterale, mentre quello trasversale è postero-laterale, così che si distinguono due facce, una antero-laterale e una postero-mediale. Ciascun rene presenta due poli, uno superiore, arrotondato e in rapporto con la ghiandola surrenale, da cui è separato da un sottile strato capsulare fibroso, ed uno inferiore arrotondato immerso nel tessuto adiposo perirenale. In ogni rene si distinguono due margini.

Il margine laterale è uniformemente convesso mentre quello mediale è convesso in prossimità dei poli superiore e inferiore ma concavo al centro, presso l’ilo. Nell’ilo dei reni, localizzato presso il suo margine mediale, penetrano i vasi di maggior calibro diretti a quest’organo, l’arteria renale e la vena renale, rispettivamente, ramo dell’aorta e affluente della vena cava inferiore, vasi linfatici e nervi. Nell’ilo, lungo 3–4 cm, entrano, dalla più superficiale (anteriore) alla più profonda (posteriore) le seguenti strutture: la vena renale e i tronchi linfatici che la affiancano, l’arteria renale e la pelvi renale. Il rene è ricoperto da una sottile capsula fibrosa costituita da collagene in cui sono immerse anche fibre elastiche e cellule muscolari lisce. Una volta sezionato è possibile distinguere due parti, una esterna di colore più cupo, la corticale e una interna, chiara, la midollare.

  • La corticale, che si trova alla periferia dell’organo, sotto la capsula, forma le colonne renali (del Bertin), che si interpongono tra una piramide e l’altra dirigendosi verso il seno renale e gli archi che sovrastano la base di ciascuna piramide, dette piramidi di Malpighi. Gli archi corticali sono attraversati dai raggi midollari, delle striature di colore più chiaro che si assottigliano procedendo dalle piramidi da cui hanno origine verso la capsula renale. La stessa sostanza corticale è divisibile in una zona esterna ed in una interna. La zona esterna è quella sottocapsulare, mentre quella interna dove si dispongono i vasi tangenziali alla base delle piramidi ed è appena soprastante la base delle piramidi; tale zona è detta anche sostanza corticale iuxtamidollare. Nella corticale troviamo due porzioni, una è la parte radiata, a contatto con la base delle piramidi e l’altra è la parte convoluta, più superficiale, sede dei corpuscoli renali di Malpighi e dei tubuli contorti.
  • La midollare, posta in profondità nell’organo e presso il suo ilo, è costituita dalle piramidi renali, delle formazioni triangolari striate e pallide con la base rivolta verso la corticale e la capsula e l’apice disposto verso il seno renale. All’apice delle papille renali sboccano i dotti collettori che riversano l’urina in uno o più calici minori, delle cavità a forma di imbuto. La capsula renale penetra nell’ilo e va a fondersi con la tonaca avventizia dei calici minori. Un calice minore si unisce agli adiacenti per formare cavità più ampie, i calici maggiori, che drenano negli infundiboli renali, generalmente due per rene, nel superiore drenano tre paia di calici maggiori, nell’inferiore quattro paia. I due infundiboli costituiscono presso l’ilo la pelvi renale, un grosso imbuto biancastro che medialmente si restringe formando un unico dotto che prosegue inferiormente, l’uretere.

Leggi anche:

Vasi e nervi

I reni necessitano di un grande apporto ematico e pertanto presentano una ricca vascolarizzazione che si sviluppa nel suo complesso per circa 160 chilometri di lunghezza. Per ogni gettata cardiaca, circa il 20% del sangue fluisce attraverso questi organi; da ciò risulta che nei reni circolano in media 1.100 ml di sangue al minuto. I principali vasi arteriosi del rene sono le due arterie renali, sinistra e destra, due vasi di grosso calibro (5–7 mm) che si distaccano quasi ad angolo retto dall’aorta addominale, poco sotto l’arteria mesenterica superiore e decorrono dietro le vene renali. L’arteria renale destra è più lunga della sinistra, dato che l’aorta è spostata a sinistra rispetto alla linea mediana e si trova leggermente più in alto.

I capillari venosi che si formano da quelli arteriosi a livello della papilla renale si uniscono a formare le venule rette ascendenti, che risalgono lungo i raggi midollari seguendo le arteriole a cui sono accoppiate fino a drenare a livello della base delle piramidi renali nelle vene arcuate o nelle vene interlobulari. Le arteriole discendenti e le venule ascendenti sono perciò molto vicine tra loro e questo facilita fenomeni di scambio. Le venule ascendenti drenano direttamente nelle vene arcuate ma più spesso nel plesso venoso peritubulare che a sua volta drena nella vena interlobulare, così come fanno le vene stellate della capsula renale. Le vene interlobulari decorrono verso la corticale interna dove drenano nelle vene arcuate, le vene arcuate procedono trasversalmente e drenano nelle vene interlobari, che discendono lungo le colonne renali per formare infine le due vene renali che escono dall’ilo del rene. Le vene renali sono anteriori alle arterie renali, si portano medialmente verso la vena cava inferiore che drena il loro sangue. La vena renale sinistra è più lunga della destra (il triplo, circa 7,5 cm) che invece è molto corta data la stretta vicinanza con la vena cava inferiore. La vena renale sinistra è appena posteriore all’arteria mesenterica superiore che la scavalca e drena il sangue della vena gonadica sinistra che vi affluisce inferiormente, così come quello della vena surrenale sinistra che vi affluisce superiormente. La vena renale sinistra drena nella vena cava inferiore poco al di sopra della destra. Le vene renali possono essere doppie.

L’innervazione simpatica del rene è fornita da rami del plesso celiaco, aorticorenale, dal nervo splancnico minimo e dal I nervo splancnico lombare che seguono il decorso dell’arteria renale costituendo poi il plesso renale. Presso l’origine dell’arteria renale è presente almeno un ganglio nervoso. I nervi successivamente proseguono seguendo il decorso delle arterie e distribuendosi a tutto il rene.

Le principali patologie renali sono:

  • sindrome nefrosica;
  • glomerulonefrite;
  • stenosi, trombosi ed embolia dell’arteria renale;
  • insufficienza renale acuta;
  • insufficienza renale cronica.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

A cosa servono le zanzare e perché esistono?

Dott Emilio Alessio Loiacono Medico Chirurgo Specialista in Medicina Estetica Roma MOTIVI ZANZARE PUNGONO PROPRIO TE Me Radiofrequenza Ruga Cavitazione Grasso Pressoterapia Linfodrenante Dietologo Cellulite Calorie Pancia Sessuologia Filler BotulinoOgni essere vivente è fondamentale per l’ecosistema, persino gli animali estivi più fastidiosi: le zanzare. Ma perché esistono? A che servono?

Come ogni tassello del “sistema Natura” le zanzare sono nutrimento per altri animali – pipistrelli, uccelli, libellule, anfibi, pesci, formiche, ragni, lucertole – poiché fanno parte della catena alimentare.

Le larve di zanzara sono una fonte di alimentazione per alcuni pesci, in particolare sono apprezzate dai goumari e dai combattenti. Una volta adulte diventano cibo per numerosi animali insettivori (uccelli, anfibi, pipistrelli…).

Con il suo regime alimentare a base di nettare, la zanzara è anche uno degli agenti dell’impollinazione delle piante, come l’ape e la farfalla.

L’aumento del numero delle zanzare va di pari passo con la diminuzione dei loro predatori; e da cosa è causata questa diminuzione se non dall’azione dell’uomo sulla natura?

Prodotti per allontanare le zanzare

Non ne potete più delle zanzare? Di seguito vi riportiamo una lista di prodotti estremamente efficaci, scelti e testati dal nostro Staff di esperti, per neutralizzare le zanzare, le mosche ed altri insetti fastidiosi:

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!