Polmoni: differenza tra funzioni respiratorie e non respiratorie

MEDICINA ONLINE POLMONI LUNGS APPARATO RESPIRATORIO SISTEMA DIFFERENZA TRACHEA VIE AEREE SUPERIORI INFERIORI TRACHEA BRONCHI BRONCHILI TERMINALI ALVEOLI POLMONARI RAMIFICAZIONI LOBI ANATOMIA FUNZIONI.jpgFunzioni respiratorie

L’energia prodotta dalla respirazione cellulare si ottiene consumando ossigeno e producendo anidride carbonica. Nei piccoli organismi, come i batteri, questo processo di scambio di gas è svolto interamente dalla diffusione semplice. Nei grandi organismi, come l’uomo, questo non è possibile. La respirazione negli organismi multicellulari è possibile grazie ad un efficiente sistema circolatorio, tramite il quale i gas arrivano anche nelle parti più piccole e profonde del corpo, al contrario del sistema respiratorio, che coglie l’ossigeno dall’atmosfera e lo diffonde nel corpo, da dove viene distribuito rapidamente in tutto l’apparato circolatorio.

Nei vertebrati, la respirazione avviene in una serie di passi. L’aria passa per le vie respiratorie, che nei rettili, negli uccelli e nei mammiferi consistono nel naso; la faringe; la laringe; la trachea; i bronchi e i bronchioli; infine vi sono gli ultimi branchi dell’albero della respirazione. I polmoni dei mammiferi sono una fitta grata di alveoli, i quali forniscono un’enorme area di superficie per lo scambio di gas. Una rete di piccolissimi capillari permette il trasporto di sangue sulla superficie degli alveoli. L’ossigeno dell’aria dentro gli alveoli si diffonde nel flusso sanguigno, mentre l’anidride carbonica si diffonde dal sangue agli alveoli, entrambi mediante fini membrane alveolari. L’immissione e l’espulsione dell’aria è guidato dai movimenti muscolari; nei primi tetrapodi, l’aria era guidata ai polmoni dai muscoli della faringe. Nei mammiferi, un largo muscolo, il diaframma guida la ventilazione alternando periodicamente la pressione e il volume del torace. Durante la normale respirazione, l’espirazione è passiva e i muscoli non sono contratti.

Funzioni non respiratorie

Oltre alle funzioni di respirazione come lo scambio di gas e la regolazione dell’idrogeno, i polmoni:

  • insieme al rene e ai tamponi ematici, sono i principali regolatori dell’equilibrio acido-base;
  • secernono sostanze quali l’ACE, fattore necessario per la conversione dell’angiotensina I (blando vaso costrittore) in angiotensina II, potentissimo vaso costrittore;
  • influenzano la concentrazione di sostanze attive e di farmaci nel sangue arterioso;
  • filtrano i piccoli grumi di sangue che si formano nelle vene;
  • fungono da soffice protezione del cuore.

Leggi anche:

Dott. Emilio Alessio Loiacono
Medico Chirurgo
Direttore dello Staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o unisciti al nostro gruppo Facebook o ancora seguici su Twitter, su Instagram, su Mastodon, su YouTube, su LinkedIn, su Tumblr e su Pinterest, grazie!

Differenza tra peritoneo parietale e viscerale

MEDICINA ONLINE PERITONEO PARIETALE VISCERALE FUNZIONI ESAME OBIETTIVO ANAMNESI VISITA MEDICA GENERALE AUSCULTAZIONE ISPEZIONE PERCUSSIONE PALPAZIONE DIFFERENZA FONENDOSCOPIO STETOSCOPIO TORACE ADDOME SEMEIOTICAIl peritoneo è una membrana sierosa mesoteliale, sottile e quasi trasparente, che si trova nell’addome e costituisce il rivestimento della cavità addominale e di parte di quella pelvica (peritoneo parietale), inoltre ricopre anche gran parte dei visceri contenuti al suo interno (peritoneo viscerale), fissandoli al contempo alle pareti della cavità (legamenti dei visceri).

Il peritoneo, come le altre membrane sierose, consta di una sottile lamina continua. A seconda della sua posizione nel cavo addominale si distingue in:

  • Peritoneo parietale, lo strato più esterno, che riveste la superficie interna delle pareti della cavità addomino-pelvica;
  • Peritoneo viscerale, lo strato più interno, che ricopre la maggior parte dei visceri contenuti all’interno del cavo addominale.

Tra questi due strati è presente uno spazio, detto cavità (o cavo) peritoneale, che è del tutto chiusa ed è quindi una cavità virtuale riempita solo da una piccola quantità (circa 50 ml) di un liquido sieroso che funge da lubrificante permettendo ai due strati di scorrere tra loro senza un eccessivo attrito. Il peritoneo viscerale, con i suoi numerosi piegamenti attorno agli organi addominali, fa sì che la cavità peritoneale si riduca ad uno spazio notevolmente piccolo, quasi virtuale. Alcuni organi dell’addome sono completamente avvolti dal peritoneo e sono provvisti di un doppio foglietto, che prende il nome di meso (es. mesentere per l’intestino tenue, mesocolon per il colon, mesometrio per l’utero e così via), che li unisce al peritoneo parietale della parete addominale. In alcuni casi, come nel mesentere, uno strato costituito da due foglietti saldati di peritoneo viscerale tende a fondersi con un altro foglietto dando origine ad una piega che si inserisce sulla parete posteriore dell’addome secondo una linea obliqua che va dalla flessura duodeno-digiunale alla fossa iliaca destra. In altri organi, come il duodeno ed il colon ascendente e discendente, il peritoneo forma un rivestimento incompleto lasciando alcune aree scoperte a contatto con la parete addominale posteriore.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Bronchioli e ramificazioni dell’albero bronchiale: anatomia e funzioni

MEDICINA ONLINE POLMONI LUNGS APPARATO RESPIRATORIO SISTEMA DIFFERENZA TRACHEA VIE AEREE SUPERIORI INFERIORI TRACHEA BRONCHI BRONCHILI TERMINALI ALVEOLI POLMONARI RAMIFICAZIONI LOBI ANATIl bronchiolo è una delle ultime ramificazioni dell’albero bronchiale, parte finale delle vie respiratorie inferiori, del parenchima polmonare e, quindi, dell’apparato respiratorio. In particolare vengono chiamati bronchioli tutte le ramificazioni bronchiali del bronco lobulare all’interno del lobulo polmonare.

Ramificazioni e albero bronchiale

I bronchioli nascono dalle ramificazioni intralobulari dei bronchi lobulari che a loro volta costituiscono ramificazioni dei bronchi di second’ordine deputati alla ventilazione delle zone polmonari. Sono i bronchi di prim’ordine di numero uguale ai lobi in cui vanno poi ad impegnarsi che terminano nei bronchi zonali.

Ogni bronco lobulare si ramifica all’interno del lobulo formano da 3 a 5 bronchioli terminali (detti anche bronchioli minimi) che vanno a costituire l’acino polmonare. Ciascun bronchiolo terminale, poi, termina dividendosi in due bronchioli respiratori (detti anche bronchioli alveolari) che a loro volta si dividono in condotti alveolari (che possono essere da 2 a 10). Entrambe queste strutture sono caratterizzate dall’avere lungo le pareti delle estroflessioni sferiche, gli alveoli polmonari, che si fanno sempre più numerosi procedendo distalmente; i condotti alveolari, particolarmente, hanno la parete formata esclusivamente dalla successione di alveoli. L’ultima parte delle vie respiratorie è infine costituita dalle ramificazioni dei condotti alveolari che terminano in condotti dilatati a fondo cieco e la parete occupata da alveoli detti infundiboli o sacchi alveolari.

Struttura

La struttura dei bronchioli varia man mano che ci si addentra nel polmone. Per quel che riguarda la struttura della mucosa e della sottomucosa, questa non cambia molto rispetto ai bronchi più esterni, ma la tonaca di sostegno diventa, invece, sensibilmente diversa. In particolare, gli anelli cartilaginei vanno a ridursi a piccolissimi noduli isolati (detti placche cartilaginee bronchiali). Proseguendo verso i bronchi di diametro minore, le placche spariscono e la parete diventa esclusivamente di tipo fibro-muscolare. Quando ci si addentra ancora di più, nei lobuli, anche questa componente viene meno, sostituita da una mucosa e anche la componente ghiandolare scompare.

La mucosa risulta formata da un epitelio e da una tonaca fibromuscolare che, una volta persa la componente cartilaginea, rimane costituita da fibre elastiche, collagene e da fascetti muscolari che circondano il punto di attacco dell’alveolo alla parete. Nei condotti alveolari la componente muscolare rimane solo nei colletti degli alveoli insieme a qualche fibra elastica. L’epitelio, in particolare, è quello che subisce più variazioni:

  • nei bronchi lobulari e i bronchioli terminali è cilindrico semplice cigliato, presenta cellule caliciforme mucipare e le cellule di Clara, elementi cubici che producono un secreto che rende fluido il muco presente;
  • nei bronchioli respiratori è inizialmente cilindrico cigliato, ma si poi si fa cubico e senza ciglia; in ogni caso non sono più presenti cellule mucipare
  • i condotti alveolari, che hanno la parete ricoperta di alveoli, presentano nei condotti alveolari un epitelio cubico privo di ciglia che continua con l’epitelio alveolare.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Sistema linfatico e linfonodi: anatomia e funzioni in sintesi

MEDICINA ONLINE LABORATORIO LYMPH NODE SYSTEM HUMAN CORPO UMANO SISTEMA LINFATICO LINFONODO LINFA CIRCOLAZIONE BLOOD TEST EXAM ESAME DEL SANGUE FECI URINE GLICEMIA ANALISI VALORI ERITROCITI ANEMIA TUMORE CANCRO.jpgIl sistema linfatico è un complesso sistema di drenaggio a una via che trasporta i fluidi dallo spazio interstiziale dei tessuti al torrente circolatorio presente in tutti i mammiferi. La sua principale funzione è il trasporto di proteine, liquidi e lipidi (specialmente per i vasi drenanti l’intestino) dall’interstizio al sistema circolatorio sanguigno, ma presenta anche ruoli di filtraggio e nella risposta immunitaria favorendo l’arrivo di antigeni agli organi linfoidi periferici per innescare i meccanismi immunitari. Non tutti gli organi sono drenati dal sistema linfatico. Il sistema nervoso centrale, ossa, midollo osseo, parte materna della placenta ed endomisio dei muscoli mancano di vasi linfatici, anche se sono provvisti di condotti prelinfatici in grado di drenare il liquido interstiziale ai linfonodi zonali. Cristallino, cornea, epidermide, cartilagine e tonaca intima delle arterie di grosso calibro mancano oltre che della vascolarizzazione linfatica anche di quella sanguigna.

Struttura del sistema linfatico

Il sistema linfatico è formato da una fitta rete di piccoli canali periferici, i capillari linfatici che, dopo aver raccolto la linfa dagli spazi intercellulari, la drenano in vasi di diametro maggiore, i collettori linfatici. I collettori, analogamente a quanto accade per le vene, confluiscono in vasi di calibro crescente per terminare in due grossi tronchi: il dotto linfatico destro, che raccoglie la linfa della porzione sopra-diaframmatica destra del corpo ed è tributario della vena succlavia destra, e il dotto toracico, cui giunge tutta la linfa delle regioni sotto-diaframmatiche più quella della parte sopra-diaframmatica sinistra, tributario della vena succlavia sinistra. Per il tramite delle succlavie, afferenti alla vena cava superiore, la circolazione linfatica termina immettendosi in quella ematica.

Leggi anche:

Linfonodi

Il percorso dei collettori linfatici è interrotto dai linfonodi, strutture specifiche formate da tessuto linfoide aggregato in noduli, che possono essere unici o più spesso raggruppati in vere e proprie stazioni linfonodali o linfocentri. La sequenza di collettori e linfonodi costituisce le catene linfatiche che decorrono affiancate ai vasi sanguigni, cosa che peraltro ne agevola l’identificazione nel corso degli interventi chirurgici, da cui prendono il nome: catena linfatica dell’arteria gastrica, catena linfatica para-aortica, catena linfatica dell’arteria mammaria interna, catena linfatica dell’arteria mesenterica inferiore. I linfonodi, in quanto centri nodali della rete linfatica, rappresentano il punto d’arrivo dei collettori pre-nodali, provenienti anche da zone diverse, e di partenza dei collettori post-nodali, in numero minore rispetto a quelli afferenti, rivolti in varie direzioni. Ciò determina la caratteristica del sistema linfatico per cui un distretto anatomico o un determinato organo, avvolto in una fitta ragnatela di capillari, può drenare verso una o più catene linfatiche e ogni stazione linfonodale, a sua volta, può ricevere linfa anche da più organi o distretti anatomici.

Leggi anche:

Funzioni dei linfonodi

La funzione primarie dei linfonodi è quella di filtrare la linfa proveniente dai tessuti per permettere la ricircolazione delle cellule dendritiche che hanno catturato l’antigene e degli antigeni stessi al loro interno. Linfociti, cellule dendritiche e antigeni una volta all’interno del linfonodo vengono indirizzati in specifici luoghi dove danno vita alla risposta immunitaria.

  • Ricircolazione dei linfociti. I linfociti si concentrano nei linfonodi perché attratti da una particolare specie di molecole, le chemochine. Le chemochine sono un particolare tipo di citochine atte ad attirare le cellule responsabili della risposta immunitaria nei giusti settori degli organi linfoidi per il loro sviluppo e attivazione. In particolare i linfociti T esprimono un recettore, il CCR7, capace di legare le chemochine CCL19 e CCL21 che vengono prodotte solo nelle aree T dei linfonodi consentendo solo a quel tipo di linfociti di arrivare in tali zone. Allo stesso modo il recettore CXCR5 dei linfociti B lega CXCL13, una chemochina prodotta solo dalle cellule dendritiche follicolari. La produzione di CXCL13 è attivata da un’altra citochina, che però non è una chemochina, la linfotossina.
  • Trasporto dell’antigene. Come descritto nel paragrafo precedente, la struttura del seno sottocapsulare, entro cui si riversa la linfa proveniente dai vasi afferenti, non consente il libero passaggio di molecole solubili, ma permette alle cellule di entrare in contatto o migrare nella regione sottostante. I virus e gli antigeni ad alto peso molecolare vengono fagocitati dai macrofagi presenti nel seno e presentati ai linfociti B della regione corticale. Gli antigeni a basso peso molecolare, invece, si impegnano nei condotti FRC per essere poi catturati dalle cellule dendritiche presenti nei condotti stessi. Gli antigeni fagocitati dalle cellule dendritiche direttamente nei tessuti raggiungono i linfonodi grazie all’espressione di un recettore per le chemochine, CCR7, che è specifico per le chemochine CCL19 e CCL21 prodotte nelle aree T dei linfonodi stessi.

Drenaggio linfatico della mammella

Un organo che si presta bene alla esemplificazione di questo concetto è la mammella che può drenare, oltre che verso il diaframma e la parete toracica, in particolare nei:

  • linfonodi posti medialmente alla ghiandola e che formano la catena dell’arteria mammaria interna, tributaria del linfocentro sopraclavicolare;
  • linfonodi della mammella contro-laterale;
  • linfonodi della catena linfatica ascellare che partendo dalla ghiandola si porta in alto verso il cavo omonimo. I linfonodi di questo linfocentro sono in media una trentina e sono distribuiti in sottogruppi variamente classificati. Un criterio è quello di identificarli in base alla loro posizione rispetto al muscolo piccolo pettorale (M.P.P.):
    • linfonodi dell’ascella inferiore o di I livello, posti lateralmente al bordo esterno del M.P.P;
    • linfonodi dell’ascella media o di II livello, posti tra il bordo mediale e quello laterale del M.P.P;
    • linfonodi dell’apice dell’ascella o di III livello, posti medialmente al margine interno del muscolo.

Numerose ricerche riguardanti la dinamica del drenaggio linfatico della mammella hanno dimostrato che la quasi totalità della linfa proveniente dalla ghiandola segue la via ascellare, mentre una parte minima intorno all’1-3% segue la via mammaria interna.

Leggi anche:

Dott. Emilio Alessio Loiacono
Medico Chirurgo
Direttore dello Staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o unisciti al nostro gruppo Facebook o ancora seguici su Twitter, su Instagram, su YouTube, su LinkedIn e su Pinterest, grazie!

Di cos’è fatto un osso, a che serve e perché è così resistente?

MEDICINA ONLINE Dott Emilio Alessio Loiacono Medico Chirurgo Roma COSTOLA INCRINATA SINTOMI TEMPI DI RECUPERO Riabilitazione Nutrizionista Infrarossi Accompagno Commissioni Cavitazione Radiofrequenza Ecografia Pulsata Macchie Capillari PeneUn osso (in inglese “bone”) è una componente anatomica del corpo umano ed insieme alle altre ossa costituisce lo scheletro umano.

Funzioni delle ossa
Pur essendo strutture anatomiche apparentemente semplici, le funzioni delle ossa -nel loro insieme – sono in realtà molteplici:

  • funzione di strutturale e di sostegno per l’intero corpo;
  • funzione di protezione degli organi interni (come nel caso di gabbia toracica, cranio e bacino);
  • funzione di inserzione dei muscoli;
  • funzione di articolazione;
  • funzione emopoietica (produzione di cellule del sangue: il midollo delle ossa lunghe ed il tessuto spugnoso delle ossa piatte contengono cellule staminali che generano i globuli rossi e i globuli bianchi);
  • funzione di riserva di grassi: il midollo giallo contiene molti acidi grassi che all’occorrenza vengono prelevati dal sangue.
  • funzione di magazzino per i sali minerali in relazione alle necessità dell’organismo, soprattutto sali di calcio e di fosforo;
  • funzione di riserva di fattori di crescita: la matrice ossea mineralizzata contiene quantità importanti di molti fattori di crescita, come il fattore insulinosimile e la proteina morfogenetica delle ossa. Oltre a fungere da riserva e quindi a mantenere costante la concentrazione sanguigna di questi fattori, essi vengono liberati localmente in caso di frattura, innescando e accelerando il processo di guarigione.
  • funzione di detossificazione: la parte inorganica delle ossa può assorbire molti metalli pesanti e altri elementi estranei, togliendoli dal circolo sanguigno e riducendo quindi il loro effetto nocivo sugli altri tessuti. Questi elementi vengono poi rilasciati lentamente per escrezione;
  • funzione di equilibrio acido-base: Grazie al grande contenuto di sali minerali, l’osso funge da tampone ematico, e riequilibra le variazioni di pH del sangue assorbendo o rilasciando sali minerali e ioni;
  • funzione di secrezione endocrina: l’osso controlla il metabolismo del fosforo secernendo FGF-23, il fattore di crescita dei fibroblasti, che riduce il riassorbimento renale degli ioni fosfato. Inoltre, tramite l’osteocalcina, abbassa la glicemia migliorando la sensibilità all’insulina, e riduce la crescita del tessuto adiposo;
  • funzione sensoriale: i tre ossicini dell’orecchio medico (martello incudine e staffa) trasmettono il suono agli organi interni dell’orecchio;
  • funzione di sistema di leve, sulle quali i muscoli esercitano la loro azione di movimento tramite le contrazioni muscolari.

Leggi anche:

Di cosa sono fatte le ossa?
Le ossa sono costituite da tessuto osseo, un tipo di tessuto connettivo caratterizzato dalla mineralizzazione della sostanza fondamentale che presenta due tipi di struttura:

  • non lamellare (propria delle ossa in formazione nel feto e di quelle riparate in seguito a fratture);
  • lamellare.

La particolare composizione del tessuto osseo conferisce all’osso le sue caratteristiche di durezza e flessibilità (entro certi limiti fisiologici): ossa sottoposte a trattamenti proteolitici finalizzati ad eliminare la componente proteica dell’osso hanno prodotto ossa molto dure ma fragili, in seguito a decalcificazione le ossa invece divenivano molto elastiche e flessibili ma poco dure. Alla luce di ciò appare chiaro che:

  • la componente proteica garantisce all’osso una buona resistenza alle sollecitazioni meccaniche;
  • la componente mineralizzata conferisce all’osso la caratteristica durezza.

La componente organica dell’osso (circa il 30% di esso) è costituita da:

  • collagene I;
  • osseina;
  • osteomucoide (una glicoproteina).

La componente mineralizzata – che nell’adulto costituisce circa il 70% dell’intero osso – è composta da:

  • fosfato di calcio in forma di cristalli di idrossiapatite (86% della componente mineralizzata) ;
  • carbonato di calcio (12%);
  • fosfato di magnesio (1,5%);
  • fluoruro di magnesio (0,5%);
  • ossido di ferro (0,1%).

Le cellule delle ossa
Nonostante siano in parte costituite da minerali, le ossa sono organi a tutti gli effetti: la loro parte minerale viene costantemente rinnovata da due tipi di cellule al loro interno, gli osteoclasti e gli osteoblasti. Grazie ad esse negli esseri umani, un osso normale viene distrutto e ricostruito completamente ogni due mesi circa. Per approfondire leggi anche: Differenza tra osteoblasti, osteoclasti ed osteociti

Periostio
Tutte le ossa sono ricoperte da una membrana fibrosa di colore biancastro molto vascolarizzata chiamata periostio da cui partono fasci di fibre connettive (fibre di Sharpey) che si estendono in profondità ancorando il periostio all’osso. Nei punti in cui l’osso si articola con altre ossa le fibre del periostio si intrecciano con quelle della capsula sinoviale, o nelle vertebre con quelle dei dischi intervertebrali. Il periostio si interrompe anche nei punti di inserzione della muscolatura lasciando il posto ai tendini. Le cavità interne dell’osso sono ricoperte da una membrana simile al periostio chiamata endostio e contengono il midollo osseo preposto all’emopoiesi, ossia la creazione di eritrociti, leucociti e piastrine.

I migliori prodotti per la cura delle ossa e dei dolori articolari 
Qui di seguito trovate una lista di prodotti di varie marche per il benessere di ossa, legamenti, cartilagini e tendini e la cura dei dolori articolari. Noi NON sponsorizziamo né siamo legati ad alcuna azienda produttrice: per ogni tipologia di prodotto, il nostro Staff seleziona solo il prodotto migliore, a prescindere dalla marca. Ogni prodotto viene inoltre periodicamente aggiornato ed è caratterizzato dal miglior rapporto qualità prezzo e dalla maggior efficacia possibile, oltre ad essere stato selezionato e testato ripetutamente dal nostro Staff di esperti:

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Quali organi ed apparati sono contenuti nella cassa toracica?

MEDICINA ONLINE Dott Emilio Alessio Loiacono Medico Chirurgo Roma GABBIA TORACICA DOVE CHE SERVE COMPOSTA Riabilitazione Nutrizionista Infrarossi Accompagno Commissioni Cavitazione Radiofrequenza Ecografia Pulsata Macchie Capillari Ano PeneNella cavità toracica sono contenute strutture appartenenti a diversi apparati e sistemi:

  • Apparato circolatorio: cuore e grandi vasi (aorta, arteria polmonare e i suoi rami, vena cava superiore e inferiore, vene polmonari) vena azygos e vena emiazygos.
  • Sistema linfatico: dotto toracico.
  • Apparato respiratorio: trachea, bronchi e polmoni.
  • Apparato digerente: esofago.
  • Sistema nervoso: nervo vago.
  • Sistema endocrino: timo.
  • Esternamente alla cavità sono presenti gli annessi cutanei e le mammelle.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!

Osso omero: anatomia e funzioni in sintesi

MEDICINA ONLINE Dott Emilio Alessio Loiacono Medico Chirurgo Roma OMERO OSSO ANATOMIA FUNZIONI SINTESI Riabilitazione Nutrizionista Infrarossi Accompagno Commissioni Cavitazione Radiofrequenza Ecografia Pulsata  Macchie Capillari Ano Pene.jpg

Omero destro (sulla sinistra: vista anteriore; sulla destra: vista posteriore)

L’omero (in inglese “humerus”) un osso lungo pari e simmetrico degli arti superiori, e costituisce lo parte scheletrica del braccio, la porzione anatomica del corpo compresa tra la spalla, superiormente, e l’avambraccio, inferiormente. L’omero corrisponde – nell’arto inferiore – al femore è l’osso pari che compone lo scheletro di ciascuna coscia.

Omèro o òmero?

Domanda apparentemente banale: quando si parla dell’osso omero, dove va l’accento? Quando si parla dell’osso omero, l’accento va sulla prima o (òmero). L’accento va sulla e (Omèro) solo in riferimento al noto poeta greco autore dell’Iliade e dell’Odissea.

Funzioni dell’osso omero

L’omero è situato tra scapola (principale osso della spalla) e ossa dell’avambraccio (radio e ulna); costituisce lo scheletro del braccio, fornisce inserzione a diversi muscoli e partecipa alla formazione di due importanti articolazioni dell’arto superiore: l’articolazione della spalla e l’articolazione del gomito.

Leggi anche: Differenza tra omero, ulna e radio

Anatomia

L’omero è l’unico osso del braccio (mentre lo scheletro dell’avambraccio, che è la parte dell’arto superiore compresa tra gomito e polso, è costituita da ulna e radio). L’omero è costituito da:

  • diafisi (anche chiamato “corpo”);
  • due estremità dette epifisi (epifisi prossimale ed epifisi distale).

L’epifisi prossimale si articola con la scapola costituendo l’articolazione scapolo-omerale (del tipo delle enartrosi), mentre l’epifisi distale si articola con le due ossa dell’avambraccio appena citate: radio e ulna.

Leggi anche:

Epifisi prossimale

L’estremità prossimale dell’omero è la porzione ossea più vicina alla spalla e che, unendosi a un osso di quest’ultima (nella fattispecie la scapola), forma la sopraccitata articolazione gleno-omerale.
Gli elementi anatomici rilevanti dell’estremità prossimale sono:

  • La testa. È la parte più prossimale dell’omero. Proiettata in direzione mediale, è una protuberanza ossea che ha la forma di una semi-sfera. Possiede una superficie liscia di natura cartilaginea e ricopre l’importante funzione di articolarsi con la cavità glenoidea (o fossa glenoidea) della scapola e formare l’articolazione della spalla.
  • Il collo anatomico. È una regione di confine tra la testa e le altre strutture dell’epifisi prossimale. È breve e più stretto rispetto alla testa.
  • Il tubercolo maggiore. È un processo osseo di discreta grandezza, che si sviluppa in direzione laterale, subito dopo il collo anatomico. Possiede due facce, una anteriore e una posteriore.
    La sua funzione è ancorare i capi terminali di tre muscoli dei 4 totali che formano la cosiddetta cuffia dei rotatori: il muscolo sovraspinato, il muscolo sottospinato (o infraspinato) e il muscolo piccolo rotondo (o teres minore).
  • Il tubercolo minore. È un processo osseo di dimensioni ridotte, in posizione mediale rispetto al grande tubercolo. Ha soltanto una faccia, quella anteriore, e funge da punto d’inserzione per il capo terminale del 4° muscolo della cuffia dei rotatori: il muscolo sottoscapolare.
  • Il solco intertubercolare. È una profonda depressione, situata tra i due tubercoli e percorsa dal tendine della lunga testa del muscolo brachiale. Sul margine superficiale, il solco intertubercolare presenta delle creste, che prendono il nome di labbra. Alle labbra, si ancorano i tendini di tre importanti muscoli: il muscolo pettorale maggiore, il muscolo grande rotondo e il muscolo grande dorsale.
  • Il collo chirurgico. È la regione di confine, che separa i tubercoli (situati superiormente) dal corpo dell’omero (inferiormente).

Leggi anche:

Diafisi

Il corpo è la porzione centrale dell’omero, compresa tra l’estremità prossimale e l’estremità distale.
Sede d’inserzione di diversi muscoli, ha un aspetto cilindrico, superiormente, e una forma prismatica, inferiormente.
Le strutture anatomiche rilevanti del corpo dell’omero sono, di fatto, tre: la tuberosità deltoidea, il foro nutritizio e la scanalatura radiale.
La tuberosità deltoidea è una prominenza ossea, situata poco più in alto della metà, in posizione antero-laterale. La sua funzione è accogliere il capo terminale del muscolo deltoide.
Il foro nutritizio è il canale che permette l’ingresso, nell’omero, dei vasi sanguigni deputati all’ossigenazione e nutrizione dell’omero stesso.
Infine, la scanalatura radiale è una lieve depressione, che percorre in diagonale e con orientamento laterale la sezione posteriore del corpo. Al suo interno, ospita il nervo radiale e l’arteria brachiale profonda. Lateralmente, termina in corrispondenza della tuberosità deltoidea.
Per quanto concerne i muscoli che hanno rapporto con il corpo dell’omero, questi sono: il muscolo coracobrachiale, il muscolo brachiale e il muscolo brachioradiale, sulla sezione ossea anteriore, e la testa mediale e la testa laterale del tricipite brachiale, sulla sezione ossea posteriore.

Epifisi distale

L’estremità distale presenta una zona articolare e una zona non articolare: quella articolare è definita lateralmente dal condilo e medialmente dalla troclea dell’omero, che ha la forma di una puleggia. Il condilo si articola con la testa del radio, mentre la troclea con l’incisura trocleare o semilunare dell’olecrano dell’ulna. La porzione non articolare dell’estremità distale è data dall’epicondilo laterale (poco sviluppato) e dall’epicondilo mediale, o epitroclea (molto più sviluppato), al di sotto del quale si trova un solco che accoglie il nervo ulnare. Dai due epicondili si originano verso la diafisi la cresta sopracondiloidea mediale e la cresta sopracondiloidea laterale. Anteriormente, al di sopra del condilo, c’è la fossetta radiale che accoglie la testa del radio durante la flessione dell’avambraccio sul braccio, sopra la troclea c’è la fossetta coronoidea che accoglie il processo coronoideo dell’ulna sempre nella flessione dell’avambraccio sul braccio e posteriormente, al di sopra della troclea, è presente la fossa olecranica per accogliere l’olecrano dell’ulna nell’estensione dell’avambraccio.

Leggi anche:

Lo Staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o unisciti al nostro gruppo Facebook o ancora seguici su Twitter, su Instagram o su Pinterest, grazie!

Guance: anatomia e funzioni in sintesi

MEDICINA ONLINE WOMAN GIRL LIPS BEAUTIFUL SMILE WHITE TEETH DENTI BIANCHI LABBRA SORRISO RISO DONNA VISO VOLTO CARIE TARTARO PLACCA DENTIFRICIO COLLUTORIO SPAZZOLINO PULIZIA CLEANING WALLe guance sono formazioni muscolo-membranose tra il mascellare e la mandibola tese a formare, in continuità con le labbra, la parete laterale del vestibolo della bocca.

Funzioni

Sotto il profilo funzionale le guance, oltre a partecipare alla maggior parte delle funzioni svolte dalle labbra, svolgono un proprio ruolo nel processo di masticazione intervenendo nella fase di triturazione degli alimenti solidi attraverso una spinta continua di questi verso le arcate dentarie. Nei casi di paresi del facciale le guance perdono la loro mobilità, diventano flaccide e in conseguenza durante la masticazione a livello alveolare c’è ristagno di cibo o di saliva; si osservano inoltre variazioni della fisionomia del soggetto.

Conformazione delle guance

Presentano una superficie esterna o cutanea e una interna o mucosa, entrambe di forma irregolarmente quadrilatera e di differente estensione. La superficie esterna, più estesa dell’interna, ha limiti segnati convenzionalmente:

  • Cranialmente da un piano passante per il pavimento della cavità orbitaria
  • Caudalmente da un piano passante per il margine inferiore del corpo della mandibola
  • Posteriormente da un piano tangente al margine posteriore del ramo della mandibola
  • Anteriormente da un piano passante per l’ala del naso e per la commissura labiale.

La superficie interna presenta limiti più netti:

  • Cranialmente e caudalmente è delimitata dai fornici vestibolari
  • Posteriormente da una plica verticale, la plica pterigopalatina corrispondente al rilievo del rafe pterigopalatino
  • Anteriormente non sono individuabili limiti di demarcazione delle labbra.

Sulla superficie interna, in prossimità della commissura labiale, sono a volte osservabili i corpuscoli di Fordyce, piccoli rilievi giallastri che non sono altro che ghiandole sebacee ectopiche.

Leggi anche:

Struttura delle guance

Nello spessore delle guance si distinguono un piano cutaneo, uno sottocutaneo, uno muscolare aponeurotico e uno mucoso.

  • La cute è riccamente vascolarizzata e fornita di molte ghiandole sebacee e sudoripare
  • Il sottocute è costituito da uno strato cellulo-adiposo di spessore variabile in rapporto con l’età, allo stato di nutrizione e alla sede considerata (più spesso al centro e posteriormente che anteriormente). Nel suo contesto si osservano le estremità di alcuni muscoli mimici come il muscolo risorio, il quadrato del labbro superiore, lo zigomatico e il platisma; vi decorrono inoltre diversi vasi e tronchi nervosi
  • Il piano muscolo-aponeurotico è costituito dal muscolo buccinatore e dalla sua aponeurosi, è un muscolo mimico che contrae rapporti con la cute ed è saldamente adeso alla sottostante mucosa; è attraversato dal dotto parotideo e da alcuni rami del nervo buccale. A tale muscolo la guancia deve la sua tonicità, importante per evitare il ristagno del cibo durante la masticazione.
  • La mucosa è composta da epitelio pavimentoso stratificato non cheratinizzato di spessore di circa 0,5 mm, la tonaca propria è ricca di fibre collagene elastiche con papille basse e irregolari in cui sono intercalate ghiandole salivari minori. Tale tonaca è saldamente adesa alla fascia del muscolo buccinatore senza l’interposizione di una sottomucosa. Nella zona mediana è presente una linea alba dovuta al contatto con i denti.

Vasi e nervi delle guance

La vascolarizzazione arteriosa è garantita dall’arteria facciale (per il settore antero-superiore), dall’arteria infraorbitaria (regione postero-superiore) e dalla buccale (per la mucosa della guancia); mentre il drenaggio venoso avviene attraverso la vena facciale anteriore e la vena retromandibolare. L’innervazione motoria è fornita dal ramo buccale inferiore della branca cervicofacciale, che origina dal nervo facciale, mentre la sensibilità generale è raccolta dal nervo trigemino attraverso i suoi rami buccale, infraorbitario e il ramo inferiore del nervo auricolo-temporale.

Leggi anche:

Lo staff di Medicina OnLine

Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o seguici su Twitter, su Instagram o su Pinterest, grazie!