La fegato è la ghiandola più voluminosa del corpo e pesa circa 1500 gr. E’ collocata a destra sotto la cupola del diaframma ed è coperta dalle ultime costole. Esso è fatto da una quantità enorme di lobuli risultanti da colonne cellulari disposte come tanti raggi. Tra un lobulo e l’altro è il connettivo interstiziale.
Visto in sezione, mostra una ricchissima rete di vasi sanguigni. Infatti riceve una grande quantità di sangue sia dall’arteria epatica (un ramo della aorta) che lo nutre, sia dalla vena porta che conduce sangue refluo dall’intestino, dallo stomaco e dalla milza. Dal fegato, il sangue torna alla circolazione generale attraverso la vena cava inferiore. In una struttura del fegato detta acino, costituita da cellule di forma poliedrica viene fabbricata la bile che si raccoglie nella cistifellea e viene versata nel duodeno. La cistifellea è quindi il serbatoio della bile che, prodotta dal fegato vi affluisce attraverso il dotto epatico e cistico, si concentra e ne defluisce tramite il dotto cistico e coledoco per versarsi quindi nel duodeno. La cistifellea, lunga circa 10 centimetri, ha un diametro massimo di 3,5 centimetri e una capacità di 30÷40 centimetri cubi. E’ dotata di una tunica muscolare che, per azione di stimoli nervosi e umorali, le consente di contrarsi e di spremere la bile quando gli alimenti, ridotti a chimo dallo stomaco, passano poi nel duodeno.
Leggi anche: Dove si trova il fegato ed a che serve?
Le funzioni della bile sono molteplici. Per la maggior parte sono svolte dai sali biliari sintetizzati dal fegato che favoriscono l’emulsione dei grassi nel succo duodenale e rendono solubili in acqua sostanze normalmente insolubili. La bile, inoltre, facilita l’azione di alcuni elementi digestivi, frena la moltiplicazione dei batteri nell’intestino, stimola la peristalsi intestinale e agisce sull’acidità del chimo rendendolo alcalino. Quando ricompare l’acidità del contenuto la neutralizza recando in sé una forte quantità di carbonato sodico. Nella bile sono presenti quantità notevoli di pigmenti biliari (la bilirubina, la biliverdina) che le conferiscono la sua intensa colorazione giallo-oro. Essi derivano dalla demolizione della molecola dell’emoglobina che avviene quasi totalmente nel fegato. L’emoglobina, infatti, giunge al fegato attraverso il sangue della milza che è l’organo principale dell’emocateresi, cioè della distruzione dei globuli rossi invecchiati. I pigmenti biliari e i sali biliari vengono riassorbiti nell’intestino per poi tornare al fegato dove sono nuovamente utilizzati (una delle caratteristiche del fegato è che la corrente biliare e quella sanguigna hanno direzione contraria). Di essi, una minima parte viene eliminata con l’urina sotto forma di urobilina. I sali biliari hanno una funzione precisa perché intervengono intimamente nell’emulsionamento (suddivisione in goccioline ognuna delle quali viene circondata da una membranella che ne impedisce la reciproca fusione), nella digestione e nell’assorbimento dei grassi. La secrezione della bile, importante per la digestione, è però solo una delle tante funzioni del fegato. Il fegato regola il glucosio nel sangue e lo immagazzina sotto forma di glicogeno; trasforma i grassi per renderli accettabili alle cellule; cattura gli aminoacidi con i quali fabbrica proteine semplici, urea e nucleoproteine.
Leggi anche: Cistifellea: cos’è, a cosa serve e dove si trova
Il fegato è il deposito di gran parte del ferro, il metallo che ha importanza essenziale per la fabbricazione dell’emoglobina nel midollo osseo; immagazzina vitamine tra cui la K con la quale produce la protrombina, una sostanza che svolge una funzione essenziale nella coagulazione del sangue. Inoltre regola il ricambio dell’acqua e rende innocue molte sostanze tossiche. E’ la principale fonte di calore per l’organismo a causa degli intensi processi ossidativi di cui è sede. Il fegato, insomma, si può considerare come il più complesso laboratorio chimico dell’organismo.
Il pancreas (parola che vuol dire: tutto carne) è una grossa ghiandola di colore grigio roseo e di forma irregolare, paragonabile a un martello appiattito, situata nella parte superiore della cavità addominale, sul davanti della colonna vertebrale lombare e dietro lo stomaco. Esso ha una struttura che ricorda da vicino quella delle ghiandole salivari, tanto da essere chiamato la ghiandola salivare dell’addome. Il pancreas è costituito da un’estremità destra rigonfia chiamata testa, dal corpo e da un’estremità sinistra assottigliata chiamata coda. Ha un aspetto lobulato e pesa 70÷100 grammi. Le cellule dei tubi terminali e delle dilatazioni degli stessi forniscono gli elementi della secrezione e costituiscono i così detti lobuli. Ai tubi terminali seguono i tubi collettori che confluiscono nei due condotti escretori. Tra i lobuli, qua e là, si notano isolati ammassi epiteliali che sono le isole di Langerhans.
Leggi anche: Dove si trova il pancreas ed a che serve?
Ha una forma a grappolo, e i suoi acini sono forniti di sottili canali dentro i quali versano il prodotto della loro attività che è appunto il succo pancreatico. Tali canalini confluiscono in condotti di calibro sempre maggiore fino ad arrivare alla formazione del dotto pancreatico principale che si estende dall’estremità sinistra all’estremità destra del pancreas, percorrendone l’asse. Questo condotto, insieme ad un altro detto “accessorio”, esce alfine dalla testa del pancreas, si avvicina al coledoco e con esso penetra nel duodeno sboccano nell’ampolla di Vater. La secrezione pancreatica è un atto riflesso che si determina per il contatto della mucosa duodenale con l’acido cloridrico gastrico, attraverso l’azione intermediaria della “secretina”, una sostanza di natura ormonale che eccita la secrezione del pancreas dopo aver attivato quella gastrica. Il succo pancreatico ha l’azione più energica di ogni altra nel processo digestivo e agisce su tutti i princìpi alimentari. Contiene tre importanti enzimi: la tripsina, la steapsina e l’amilopsina. La tripsina completa la trasformazione delle sostanze proteiche già iniziata nello stomaco dalla pepsina; la steapsina attacca con maggiore energia i grassi già preparati dall’azione della lipasi nello stomaco e della bile nel duodeno; l’amilopsina completa la scissione degli amidi cominciata dalla ptialina nella bocca.
Leggi anche: Bile: dove si trova, a che serve e da cosa è composta?
La tripsina è presente nel pancreas sotto forma di “prezimogeno”, inattivo, che viene attivato dalla “enterochinasi”, un fattore elaborato dalla mucosa duodenale. Se la tripsina fosse già attiva all’interno del pancreas, inizierebbe la sua azione digestiva a danno del pancreas medesimo, che andrebbe incontro ad auto digestione (autolisi). Tra gli enzimi che demoliscono i grassi alimentari nello stomaco, nel duodeno e nell’intestino, la steapsina ha l’azione più forte. E ciò avviene anche perché nel duodeno l’acidità del chimo è neutralizzata a opera di sostanze alcaline (bile e succo pancreatico). Infatti solo in ambiente alcalino può avvenire la scissione dei grassi in acidi grassi e glicerina. Nella costituzione del pancreas entrano però altri elementi ghiandolari che, sforniti di dotti escretori versano il loro prodotto direttamente nel sangue. Sono piccoli ammassi di cellule disseminati nella compagine del tessuto ghiandolare acinoso. Si chiamano isole di Langerhans e nel loro complesso formano una ghiandola a secrezione interna la quale produce un ormone detto insulina, che regola il ricambio degli zuccheri, favorendo l’accumulo di glicogeno nel fegato e nei muscoli e la combustione del glucosio a livello delle cellule.
Il pancreas è dunque una ghiandola con doppia funzione: una secrezione esterna, il succo pancreatico, prodotta dagli acini e versata nel duodeno; una secrezione interna, l’insulina, prodotta dalle così dette isole di Langerhans e versata nel sangue. Appare chiaro che nella funzione digestiva l’aspetto chimico prevale su quello meccanico della masticazione e della peristalsi. Infatti la digestione è più che altro una sequenza di reazioni chimiche di progressiva semplificazione delle sostanze alimentari per renderle accettabili alle cellule. E i grandi protagonisti di tale semplificazione sono gli enzimi, ognuno dei quali ha un’azione specifica su una determinata sostanza.
Leggi anche:
- Vena porta e sistema portale: anatomia e funzioni della circolazione epatica
- Angioma epatico, una massa all’interno del fegato: è un cancro?
- Differenza tra aorta ed arteria
- Differenza tra coronarie e arterie: miocardio e circolazione coronarica
- Vena porta e sistema portale: anatomia e funzioni della circolazione epatica
- Differenza tra cirrosi e fibrosi
- Dolore nel lato sinistro e destro del corpo: a cosa corrisponde?
- Differenza tra dolore somatico, viscerale, superficiale e profondo
- Dotto epatico comune, cistico e coledoco: anatomia del sistema biliare
- Duodeno: anatomia e funzioni in sintesi
- Pancreas: anatomia e funzioni in sintesi
- Differenza tra intestino tenue e crasso
- Si può vivere senza cistifellea?
- Sindrome post-colecistectomia: conseguenze dell’asportazione della cistifellea
- Trapianto di cellule pancreatiche e pancreas artificiale per dire addio al diabete
Dott. Emilio Alessio Loiacono
Medico Chirurgo
Direttore dello Staff di Medicina OnLine
Se ti è piaciuto questo articolo e vuoi essere aggiornato sui nostri nuovi post, metti like alla nostra pagina Facebook o unisciti al nostro gruppo Facebook o ancora seguici su Twitter, su Instagram, su Tumblr e su Pinterest, grazie!
Lo stomaco ha varie funzioni tra cui quella principale è digerire in filamenti lineari le molecole proteiche ingerite con l’alimentazione (denaturazione), mediante l’azione dell’acido cloridrico e di alcuni enzimi, al fine di consentirne poi l’assorbimento al livello dell’intestino tenue. In caso di gastrectomia parziale o totale (rimozione chirurgica dello stomaco che si rende necessaria specie in presenza di cancro gastrico), la vita è possibile? La risposta è insita nell’intervento chirurgico che di fatto collega una parte dell’intestino (quasi sempre il digiuno) con l’esofago, ricreando quindi una continuità del tratto digerente. Aiutati dai succhi biliari e pancreatici, anche i gastrectomizzati riescono a digerire il cibo. Risulta anche importante una lunga masticazione. Certo, cambia il tipo di alimentazione: alcuni cibi diventano indigeribili, altri creano fastidi. Ma mangiando poco e spesso, e provando varie combinazioni si riesce quasi sempre a trovare una buona soluzione per la nuova alimentazione. L’aiuto più grande deve venire da un nutrizionista“esperto, che potrà fornire i consigli migliori su come adattarsi alla nuova alimentazione. Certamente la vita non sarà la stessa del pre-intervento in quanto ci si sentirà più spesso stanchi e si dovrà essere una costante integrazione vitaminica (Vit B, Vit. D, ferro, folina ecc ecc.) da valutare con il medico in base agli esami.
Il succo gastrico è una secrezione prodotta dalla mucosa interna dello stomaco contenente muco, sali, acqua, enzimi digestivi (come ad esempio la pepsina) e acido cloridrico, oltre al cosiddetto fattore intrinseco, che favorisce l’assorbimento della vitamina B12. Mediamente in un adulto la quantità secreta è compresa fra 6 e 9 litri. La rennina che aggredisce il latte e i suoi derivati facendo in modo che la proteina caseina resti più a lungo nello stomaco e possa essere meglio digerita è tipica di alcuni animali, specialmente di ruminanti, ma non è presente nel succo gastrico degli esseri umani dove la sua attività è svolta dalla pepsina. Il pH del succo gastrico è molto basso, ma comunque variabile (da 1 a 2). Alcune categorie di farmaci quali gli inibitori di pompa protonica (esempio omeprazolo), gli antagonisti del recettore H2 (come la ranitidina) e il misoprostolo, possono essere utilizzati al fine di innalzare il pH gastrico; in tal senso possono essere utilizzati nella terapia delle sindromi dispeptiche quali gastriti e malattia da reflusso gastroesofageo.
A tutti noi è capitato qualche volta di sentire dolore allo stomaco: fitte dovute alla tensione nervosa che si accumulano in questa parte del corpo e che producono malessere, tolgono la voglia di mangiare e, in qualche modo, hanno delle ripercussioni negative su tutto l’organismo.
Cominciamo dalla prima, quasi banale, differenza: le proteine di origine vegetale sono contenute in tutti gli alimenti di origine vegetale, come ad esempio: